Accessories

for A/AF/AL \& AE contactors

Auxiliary contact blocks - Standard			
Positioning	Maximum number of contact blocks	Contact Description	Catalog number
Front mounting (single pole)	4 blocks: A9 - A26 AE9 - AE26 AL9 - AL26 5 blocks: A30, A40, AE30, AE40, AL30, AL40 6 blocks: A45 - A110 AE45 - AE110 AF45-AF110	$1 \text { N.O. }$ $1 \text { N.C. }$ 1 N.O. Early make 1 N.C. Late break	$\begin{aligned} & \text { CA5-10 } \\ & \text { CA5-01 } \\ & \text { CC5-10 } \\ & \text { CC5-01 } \end{aligned}$
Front mounting (4 pole)		4 N.O. 3 N.O. \& 1 N.C. 2 N.O. \& 2 N.C. 4 N.C. 2 N.O./2 N.C. ${ }^{\text {a }}$ (CA5-40E CA5-31E CA5-22E CA5-04E CA5-11/11E
	$\begin{aligned} 1 \text { block: } & \text { A9 - A40-30-10 } \\ & \text { AL9 - AL40-30-10 } \end{aligned}$	3 N.O. \& 1 N.C. 2 N.O. 2 N.C. 1 N.O. $\& 3$ N.C. 4 N.C. 4 N.O. 2 N.O. $/ 2$ N.C. ${ }^{(1)}$	CA5-31M CA5-22M CA5-13M CA5-04M CA5-40N CA5-11/11M
Side mounting (2 pole)	$\left.\begin{array}{l}2 \text { blocks: A9 - A75, AE9-AE45 } \\ 1 \text { block: AE50 - AE75, AL9 - AL40 }\end{array}\right\}$	1 N.O. \& 1 N.C.	CAL5-11
	1 block: A/AE/AF95-A/AE/AF110	1 N.O. \& 1 N.C.	CAL18-11
	$\left.\begin{array}{l}2 \text { blocks: A145 - A300, AF145-AF1650 } \\ 2 \text { blocks: A145-A300, AF145-AF1650 }\end{array}\right\}$	1 N.O. \& 1 N.C. (inside L or R) 1 N.O. \& 1 N.C. (outside, L or R)	$\begin{aligned} & \hline \text { CAL18-11 } \\ & \text { CAL18-11B } \end{aligned}$

Auxiliary contact blocks - Front mounting, switching low voltage and low current

Positioning	Maximum number of contact blocks	Contact Description	Degree of protection	Catalog number
Front mounting (single pole)	$\begin{aligned} 4 \text { blocks: A9 - A26 } \\ \text { AE9 - AE26 } \\ \text { AL9 - AL26 } \end{aligned}$	$\begin{aligned} & 1 \text { N.O. } \\ & 1 \text { N.C. } \\ & 1 \text { N.O. } \\ & 1 \text { N.C. } \end{aligned}$	$\begin{aligned} & \text { IP } 40 \\ & \text { IP } 40 \\ & \text { IP } 40 \\ & \text { IP } 40 \end{aligned}$	$\begin{aligned} & \text { CE5-10D0.1 } \\ & \text { CE5-01D0.1 } \\ & \text { CE5-10D2 } \\ & \text { CE5-01D2 } \end{aligned}$
	$\left.\begin{array}{c}5 \text { blocks: A30, A40, AE30, AE40, AL30, AL40 } \\ 6 \text { blocks: A45-A110 } \\ \text { AE45-AE110 } \\ \text { AF45-AF110 }\end{array}\right\}$	$\begin{aligned} & 1 \text { N.O. } \\ & 1 \text { N.C. } \\ & 1 \text { N.O. } \\ & 1 \text { N.C. } \end{aligned}$	$\begin{aligned} & \hline \text { IP67 } \\ & \text { IP67 } \\ & \text { IP67 } \\ & \text { IP67 } \end{aligned}$	$\begin{aligned} & \text { CE5-10W0.1 } \\ & \text { CE5-01W0.1 } \\ & \text { CE5-10W2 } \\ & \text { CE5-01W2 } \end{aligned}$

Accessories
 for A/AF/AL \& AE contractors

Pneumatic timers

Mounting on	Timing range	Contacts N.O. NC.	Catalog number	
Ag - A75	On delay $0.1-40 \mathrm{~s}$	1	1	WP 40DA
AE - AE75	On delay $10-180 \mathrm{~s}$	1	1	WP 180DA
ALP - AL40	Off delay $0.1-40 \mathrm{~s}$	1	1	TP40IA
	Off delay $10-180 \mathrm{~s}$	1	1	TP180IA

Interlocks for two horizontally mounted contractors - A9-A110

Feature	Mounting on	Contacts N.O. N.C.	Catalog number
Mechanical/electrical	A/AE/AL9-A/AE/AL40	$-\quad 2$	VE5-1
Mechanical/electrical	A45-A110	$-\quad 2$	VE5-2 (1)
Mechanical	A/AE/AL9-A/AE/AL40	$-\quad-$	VM5-1

Interlocks for two horizontally mounted contractors - A95-AF750 contractors

Feature	Left contactor	Right contactor	Catalog number
Mechanical	A95 - A300	A145-A300	VM300H
Mechanical	A210 - A300	AF400-AF460	VM300/460H
Mechanical	AF400 - AF750	AF400-AF750	WM 750H

Interlocks for two vertically mounted contractors - A95-AF750 contactors

Interlocks for two horizontally mounted contractors - AF 1350-AF1650 contractors

Feature	Left contactor	Right Contactor	Catalog number
Mechanical	AF1350 - AF1650	AF1350 - AF1650	WM 1650H

Auxiliary lead terminals (Set of 2)

Connections	Mounting on	Catalog number
Connects from side	A50 - A75	LK75-A
Connects from top	A50 - A75	LK75-A1
Connects from side	A95 - A110	LK110

Accessories

Possible accessory combinations for A contactors

	Accessories - Front face mounting			Accessories - Side mounting		
	Auxiliary contacts		Pneumatic timers	Auxiliary contacts	Electrical or mechanical interlock ${ }^{(1)}$	
	$\begin{gathered} \text { CA5-10 } \\ \text { or CA5-01 } \end{gathered}$	$\begin{aligned} & \text { CA5-40 } \\ & \text { or CA5-22 } \\ & \text { or CA5-31 } \end{aligned}$	$\begin{aligned} & T P-D \\ & \text { Tr TP - } 1 \end{aligned}$	$\begin{aligned} & \text { CAL } 5-11 \\ & \text { CAL18-11 } \\ & \text { CAL18-11B } \end{aligned}$	$\begin{gathered} \text { VE5-1 } \\ \text { or VM 5-1 } \end{gathered}$	VE 5-2 VM300H VM $300 / 460 \mathrm{H}$ VM 750H

Configurations of accessories are different depending on whether front or side mounted.

Contactor mounting configurations (standard from factory)
Auxiliary contacts are mounted on the contactor in the following order:

$$
\begin{aligned}
& \text { Left }-1 \text { st } \\
& \text { Right }-2 \text { nd } \\
& \text { Top }-3 \text { rd (L to R) }
\end{aligned}
$$

Accessories

Surge suppressors for A/AE/AL/EK contactors

Technical data

Type	Control circuit	Opening time growth factor	Residual overvoltage or clipping voltage	Remarks	
RT 5 /... transil diode	$\begin{aligned} & \mathrm{DC} \\ & \mathrm{DC} \\ & \mathrm{DC} \\ & \mathrm{DC} \\ & \mathrm{DC} \end{aligned}$	2.5 to 3	$\begin{gathered} 50 \mathrm{~V} \\ 100 \mathrm{~V} \\ 150 \mathrm{~V} \\ 210 \mathrm{~V} \\ 390 \mathrm{~V} \end{gathered}$	Advantages Drawback	- Good energy absorption - Unpolarized system - Simple, reliable system - A certain delay on drop out which does not however reduce contactor breaking capacity.
Varistor	$\begin{aligned} & \mathrm{AC} / \mathrm{DC} \\ & \mathrm{AC} / \mathrm{DC} \\ & \mathrm{AC} / \mathrm{DC} \\ & \mathrm{AC} / \mathrm{DC} \end{aligned}$	1.1 to 1.5	$\begin{aligned} & 132 \mathrm{~V} \\ & 270 \mathrm{~V} \\ & 480 \mathrm{~V} \\ & 825 \mathrm{~V} \end{aligned}$	Advantages Drawback	- High energy absorption; good damping - Unpolarized system - Clipping as from $\mathrm{U}_{\mathrm{vdr}}$, thus voltage front up to this point
	AC	1.2 to 3	2 to 3 xUc	Advantages	- Very fast clipping - Attenuation of steep fronts and thus of high frequencies - No operating delays
	$\begin{aligned} & \mathrm{AC} / \mathrm{DC} \\ & \mathrm{AC} \end{aligned}$	1.1 to 1.5	$\begin{array}{r} 205 \mathrm{~V} \\ 1100 \mathrm{~V} \end{array}$	Advantages	- High energy absorption: good damping - Unpolarized system - The RC system damps the voltage front under the Uvdr* threshold.

Accessories

Surge suppressors for A/AE/AL/EK contactors General information

General

The operation of inductive circuits causes overvoltages, in particular on opening of the contactor coil.
The electromagnetic energy stored by the coil during contactor closing is restored on opening in the form of surges, the slope and amplitude of which may rise to several kilovolts. A number of drawbacks are observed ranging from interference on the electronic devices to breakdown of insulators and even destruction of certain sensitive components.
The graph opposite reproduces the oscillogram showing voltage discharges at the terminals of a $42 \mathrm{~V} / 50 \mathrm{~Hz}$ coil without peak clipping. The coil was switched by 8 series-connected poles of a contactor relay
Following a burst of discharges with a very steep slope a damped oscillation emerges with a peak value of 3500V.

Overvoltage factor

The overvoltage factor k is defined as the ratio of the maximum overvoltage peak value \hat{U}_{S} to the peak value \hat{U}_{c} of the coil rated control voltage U_{c} :
in DC:

or in AC:

For example the following is obtained for the above graph: $k=\frac{3500}{42 \sqrt{2}} \approx 60$

Surge suppressors

To guard against the harmful effects of these overvoltages, $A B B$ has developed a range of surge suppressors designed to reduce the k factor defined above and to limit or even completely eliminate the high pre-damping voltage frequencies.
Each case is different, but the technical data tolerances and the generous sizing of parts have enabled us to reduce the number of variants.
We have chosen the following solutions: transil diodes, varistors and RC blocks
Note: A varistor is a resistor whose value increases to a very large extent when a certain voltage is applied at its terminals

Wiring diagrams

Transil diode

Varistor (only)

RC type

Varistor + RC

General technic al data

The housings and impregnation resins of the surge suppressors are made of flame-resistant materials in accordance with the UL 94 standard

These systems are not polarized, i.e. d.c. operated devices do not have to be connected in a specific direction.

- Operating temperature: -20 to $+70^{\circ} \mathrm{C}$
- Connection to the coil terminals (parallel mounting)
- For RT 5, RV 5, RC 5-1 and RC 5-2: clip-on for both fixing and connection
- Mounting:
- RT 5, RV 5 and RC 5: clipped onto the top part of the contactor base. This mounting method prevents any projections and change in contactor dimensions.
- RC-EH: glued to the top part of the contactor base.

Accessories

Interface relays for A contactors
Interface relays

Mounting on contactor types	Coil voltages	Catalog number
N, A9 - A110	$24-250 \mathrm{~V}, 50,60 \mathrm{~Hz}$	RA5

Description

RA5 interface relays are designed to receive 24 VDC signals delivered by PLCs or other sources with a low output power and to restore them with sufficient power to operate the coils of the relevant contactors

Types

- RA5 for combination with A9 - A110 contactors and N contactor relays.

Description

RA5 interface relays are made up of a miniature electromechanical relay equipped with a N.O. contact and with a low consumption 24 VDC coil.
The interface relay coil is controlled by the PLC while the N.O. contact ensures switching of the power contactor
Coil switching gives rise to overvoltages which have adverse effects on the electronic devices, insulators and, more generally, on component lifetime. The RA 5 is equipped with surge suppressors:

- on the 24 VDC relay coil via a diode
- on the power contactor coil via a varistor
Furthermore, the RA5 are protected against relay pole reversal by a diode inserted between the E1 and E2 input terminals.

Connection

The "E1+" and "E2-" input terminals must be connected, according to their polarity, to the PLC output.

- The RA 5 is equipped with two terminal pads for connection to the A1 and A2 terminals of the contactor coil. This coil is supplied between the A0 and A2 terminals of the RA 5
RA 5 interface relay for the A 9-A 110 contactors and N control relays

Mounting

- RA5: terminal pads clamped inside the contactor coil terminals.

Accessories

for A/AE/AL/AF contactors

Terminal lug kits (Set of 3)

Wire range	For contactor	Catalog number
$6-250$ MCM	A145-A185	ATK185
$4-400$ MCM	A210 - A300	ATK300
(2) $4-500$ MCM	A210 - A300	ATK300/2
(2) $20-500$ MCM	AF400 - AF580	ATK580/2
(3) $2 / 0-500$ MCM	AF580 - AF750	ATK750/3
(4) 4/0-500 MCM	AF1350	ATK1350/4
(4) $1 / 0-750$ MCM	AF1350 - AF1650	ATK1650/4
(6) $1 / 0-750$ MCM	AF1350 - AF1650	ATK1650/6

Contact kits		
Conta	For contactors	Catalog number
3 Pole		
	A/AE/AF50	ZL50
	A/AE/AF63	ZL63
	A/AE/AF75	ZL75
	A/AE/AF95	ZL95
	A/AE/AF110	ZL110
	A/AF145	ZL145
	A/AF185	ZL185
	A/AF210	ZL210
	A/AF260	ZL260
	A/AF300	ZL300
	AF400	ZL400
	AF460	ZL460
	AF580	ZL580
	AF750	ZL750
	AF1350	ZL1350
	AF1650	ZL1650
4 Pole		
	A/AE45	ZLT45
	A/AE50	ZLT50
	A/AE75	ZLT75
3 Pole	UA50	ZLU50
	UA75	ZLU75
	UA95	ZLU95
	UA110	ZLU110

Mechanical latches

For contactors	Catalog number
	A9 - A75, AE45-AE75, \& AL9 - AL40

\star - Coil voltage suffix. Refer to Coil Voltage Selection chart and substitute the desired coil voltage suffix for the \star.
Coil voltage selection chart - mechanical latches for $A, A E \& A L$ contactors

| $50 \mathrm{~Hz}(\mathrm{AC} / \mathrm{DC})$ | $60 \mathrm{~Hz}(\mathrm{AC})$ | Voltage
 code | | $50 \mathrm{~Hz}(\mathrm{DC})$ | $60 \mathrm{~Hz}(\mathrm{AC})$ | Voltage
 code |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 24 | $24-28$ | $\mathbf{0 1}$ | | $220-230$ | $220-255$ | $\mathbf{0 6}$ |
| 42 | $42-48$ | $\mathbf{0 2}$ | | $230-240$ | $230-277$ | $\mathbf{0 5}$ |
| 48 | $48-55$ | $\mathbf{0 3}$ | | $380-415$ | $380-440$ | $\mathbf{0 7}$ |
| 110 | $110-127$ | $\mathbf{0 4}$ | | $415-440$ | $440-480$ | $\mathbf{0 8}$ |

Range: WB75A for contactors A9-A75, AL9 - AL40, AE45-AE75 and control relays N and NL.
Description: WB75A block: contains a mechanical latching device with electromagnetic impulse unlatching (AC or DC) or manual unlatching. Captive screw type connecting terminals, built-in cable clamps, M $3.5(=,-)$ posidrive 1 screw with screwdriver guidance, delivered untightened and protected against accidental direct contact.
Operation: After closing, the contactor continues to be held in the closed position by the latching mechanisim should the supply voltage fail at the contact coil terminals.
Contactor opening can be controlled:

- Electrically by an impulse* (AC or DC) on the WB75A block coil. The coil is not designed to permanently energized.
- Manually by pressing the pushbutton on the front face of the WB75A block.

Mounting: WB75A is clipped onto the front face of the contactor.

Identification markers

Mounting on	Coil voltage	Catalog number
A/AE/AL/AF9 - A/AE/AL/AF110	Pack of 50	BA5-50

Accessories

for A／AE／AL／AF contactors
 Coils \＆coil voltage codes

Coils－AC operated	
For contactors	Catalog number
$\begin{array}{r} \text { A9 - A16 } \\ \text { A26 - A40 } \\ \text { A45 - A75 } \\ \text { A95 - A110 } \\ \text { A145 - A185 } \\ \text { A210 - A300 } \\ \hline \end{array}$	
Coils－DC operated	
$\begin{aligned} & \text { AE9 - AE16 } \\ & \text { AE26-AE40 } \\ & \text { AE45-AE75 } \\ & \text { AE95-AEE110 } \end{aligned}$	ZAE16－丸 ZAE40－\star ZAE75－\star ZAE110－\star
Auxiliary including an insertion contact and a varistor for DC operated contactors AE95－AE110	CCL18－01
Coils－AC／DC operated（coil and printed circuit board except ZAF1650）	
AF45－AF75 AF95，AF110 AF145－AF185 AF210－AF300 AF400，AF460 AF580，AF750 AF1350，AF1650（Set of 2 coils only）	ZAF75－ネ ZAF110－\star ZAF185－\star ZAF300－ $\begin{gathered}\text { た }\end{gathered}$ ZAF460－\star ZAF750－\star ZAF1650－\star
Printed circuit board－AC／DC operated	
AF1350－AF1650	ZP1650

\star－Coil voltage suffix．Refer to Coil Voltage Selection charts below and substitute the desired coil voltage code for the \star

Coil voltage selection－AC operated
for A9－A300；UA26－UA110

VAC（50Hz）	VAC（60Hz）	Voltage Code
24	24	81
26	28	16
28	32	17
42	42	82
48	48	83
60	60	73
100	100－110	74 （2）
110	110－120	84
110－115	115－127	89 （3）
120	140	29
125－127	150	30
175	208	34
190	220	36
200	200－220	75 （2）
220－230	230－240	80
230－240	240－260	88
230－240	277	42
230／400	－	62 （1）
－	230／400	63 （1）
380－400	400－415	85
400－415	415－440	86
－	480	51
440	500	53
500	600	55
550	－	56
660－690	－	58

Coil voltage selection－DC operated for AE contactors

VDC	Voltage code AE contactors
12	$\mathbf{8 0}$
24	$\mathbf{8 1}$
42	$\mathbf{8 2}$
48	$\mathbf{8 3}$
50	$\mathbf{2 1}$
60	$\mathbf{8 4}$
75	$\mathbf{8 5}$
110	$\mathbf{8 6}$
125	$\mathbf{8 7}$
220	$\mathbf{8 8}$
240	$\mathbf{8 9}$
250	$\mathbf{3 8}$

Coil voltage selection－AC／DC operated for AF50－AF1650

$\begin{gathered} \text { VAC \& VDC } \\ 40-60 \mathrm{~Hz} \end{gathered}$	Suffix Code
24－60 VDC	68 （4）
20－60 VDC	72 （5）
48－130 VAC／VDC	69
100－250 VAC／VDC	70 ⑦
250－500 VAC／DC	71 （6）

Accessories

for A/AE/AL/AF contactors

Connection kits for reversing

	Catalog number
Mounting on 3 pole contactors	BEM16-30
A/AE/AL9 - A/AE/AL16	BEM26-30
A/AE/AL26	BEM40-30
A/AE/AL30, A/AE/AL40	BEM $75-30$
A/AE/AF50 - A/AE/AF75	BEM110-30
A/AE/AF95, A/AE/AF110	BEM185-30
A/AF145-A/AF185	BEMA300-30
A/AF210 - A/AF300	BEM460-30
AF400 - AF460	BEM $750-30$

Application
Connections between the main poles of two $\mathbf{3}$ pole contactors mounted side by side so that they operate as reversing contactors.
Description
The connection kits for reversing contactors are made up of three reversing connections and three phase to phase connections.
BEM16-30 - Insulated, solid, rigid copper wires
BEM26 and 40-30 - Insulated, stranded, rigid copper wires
BEM75 and 110-30 - Insulated, solid copper bars

Connection kits for phase to phase

Mounting on 3 pole contactors	Catalog number
A/AE/AF50, A/AE/AF75	BES75-30
A/AE/AF95, A/AE/AF110	BES110-30
A/AF145-A/AF185	BES185-30
A/AF210 - A/AF300	BESA300-30
AF400 - AF460	BES460-30
AF580 - AF750	BES750-30

The connection kit for phase to phase contactors is made up of three phase to phase bus bars.

Connection kits for wye-delta starters

Mounting on contactors		Catalog number
Line and delta contactor	Wye contactor	
A30	A26	
A40	A26	BED50U
A50	A30	BED75U
A63	A40	BED95U
A75	A50	BED110U
A95	A75	BED145U
A110	A95	BED185U
A145	A110	BED210U
A185	A145	BED300U
A210	A185	BED400U
A260/A300	A210	BED460U
AF400/AF460	A260/A300	BED580U
AF460	AF400	BED750U
AF580	AF400/AF460	
AF750	AF580	

Application

Connections between the main poles of a wye-delta starter.

Description
The connection kits for wye-delta starters are made up of:

- Three line contactor/wye contactor connections - line side.
- Three wye contactor/delta contactor connections - load side.
- The shorting connection for the " S " contactor.

BED40U - Insulated, stranded, rigid copper wires.
BED50U thru BED750U - Insulated, solid copper bars.
The above connection sets allow a mechanical interlock unit to be mounted between the wye and delta contactors if required.

Accessories

for A/AE/AL/AF contactors

Additional terminal blocks Mounting on 3 pole contactors				Wire range	Catalog number
A/AE/AL9 - A/AE/AL16 (set of 2)	$16-6$	LD-16			
A/AE/AL26 (set of 2)	$14-6$	LD-26			
A/AE/AL30 - A/AE/AL40	$12-4$	LD-40			
A/AE/AF50 - A/AE/AF75	$10-2$	LD-75			
A/AE/AF95-A/AE/AF110	$8-1$	LD-110			

Utilization - The LD series terminal block is designed to increase the connection capacity of the contactor on which it is mounted. The LD 75 and LD110 terminal blocks are mounted in the three independ apertures located above the built-in connectors.

Terminal extensions

Mounting on contactors	Catalog number
A/AE/AF50-A/AE/AF75	BEXT-75
A/AE/AF95, A/AE/AF110	LW-110
A/AF145 - A/AF185	LX185
A/AF210 - A/AF300	LX300
AF400 - AF460	LX460
AF580 - AF750	LX750

Application

They are designed to increase the width of the contactor terminal pads to allow larger connectors to be mounted.
Description
Terminal extension sets contain 3 bars.
Terminal shrouds - two pieces

For contactor	Catalog number
A/AF145 - A/AF185 for flush mount	LT185-AC
A/AF145 - A/AF185 for extended mount	LT185-AL
A/AF145 - A/AF185 for shorting bar LY...between A(F)145 / A(F)185 \& TA200DU	LT185-AY
A/AF210 - A/AF300 for flush mount	
A/AF210 - A/AF300 for extended mount	LT300-AC
A/AF210 - A/AF300 for shorting bar LY300	LT300-AL
AF400 - AF460 for flush mount	LT300-AY
AF400 - AF460 for extended mount	LT460-AC
AF580 - AF750 for flush mount	LT460-AL
AF580 - AF750 for extended mount	LT750-AC

Terminal enlargements

For contactor	Catalog number
A/AF95 - A/AF110	LW110
A/AF145 - A/AF185	LW185
A/AF210 - A/AF300	LW300
AF400 - AF460	LW460
AF580 - AF750	LW750

Arc chutes

For contactor	Catalog number
A/AF145-A/AF185	ZW185
A/AF210 - A/AF300	ZW300
A/AF400 - A/AF460	ZW460
A/AF580-A/AF750	ZW750
AF1350-AF1650	ZW1650

Accessories

for A/AE/AF contactors

Vertical connection bars between contactor and MCCB - three bars
MCCB
T1
T3

Vertical connection bars between contactor and MCCB - three bars

MCCB	For contactor	Catalog number
S3, S4	A/AF145-A/AF185	BEA185D/S3/S4
S4	A/AF210-A/AF300	BEA210D/S4
S5	A/AF210-A/AF300	BEA300D/S5
S5	AF400 - AF460	BEA400D/S5
S6	AF400 - AF750	BEA750D/S6

To be used when power take off is needed (IP00) or with other bus bars. (EX: Reversing, IP20)
Horizontal connection busbars between contactor and MCCB - three bars

MCCB	For contactor	Catalog number
S3, S4	A/AF145-A/AF185	BEA185H/S4
S4	A/AF210-A/AF300	BEA210H/S4
S5	A/AF210-A/AF300	BEA300H/S5
S5	AF400 - AF460	BEA400H/S5
S6	AF400-AF460	BEA460H/S6
S6	AF580-AF750	BEA750H/S6

Shorting bars, 2 pole

For contactor	Catalog number
A/AF145-A/AF185	LP185
A/AF210 - A/AF300	LP300
AF400 - AF460	LP460
AF580 - AF750	LP750

Shorting bars, 3 pole

For contactor	Catalog number
A/AE45-A/AE/AF75	LF75
A/AE/AF95-A/AE/AF110	LY110
A/AE/AF145-A/AE/AF185	LY185
A/AE/AF210 - A/AE/AF300	LYA300
AF400 - AF460	LY460
AF580 - AF750	LY750

Accessories

for A contactors
TE5S electronic timer for wye-delta starters

Electronic timer

For contactors	Rated control voltage $\mathbf{U C}_{\mathbf{c}}$ \mathbf{V}	Packing piece	Unit weight kg	Catalog number
A9-AF750	$24 \mathrm{AC} / \mathrm{DC}$	1	0.080	TE5S-24
	$110-120 \mathrm{AC}$	1	0.080	TE5S-120
	$220-240 \mathrm{AC}$	1	0.080	TE5S-240
	$380-440 \mathrm{AC}$	1	0.080	TE5S-440

Application

Utilization

When used in wye-delta starters, the TE5S lags the wye connection and provides a lapse of 50 ms before the switchover to the delta connection.

Description

According to the type of device chosen, the electronic circuit has a 24 VAC/VDC, $110-120$ VAC or $220-230$ VAC supply. An output relay with reversing contact ensures high current switching. A two-position switch allows selection of one of the two time delay ranges: 0.8 to 8 s or 6 to 60 s . The 0.1 to 1.0 adjustable knob allows an initial setting without steps within the previously selected range which can then be adjusted using a stopwatch.
Note: We recommend that you allow for temperature drift for the final adjustment of the time delay setting. Drift: - 0.2% per
${ }^{\circ} \mathrm{C}$. For example, a setting made at $20^{\circ} \mathrm{C}$ will yield a time delay shorter by 7% at $55^{\circ} \mathrm{C}$ in an enclosure. $\left(-0.2 \%\right.$ per ${ }^{\circ} \mathrm{C}$ i.e. $-0.2 \times 35=-7 \%$).
The TE5S, which is not affected by these settings, establishes a fixed "lapse" of 50 ms between the opening of contact 15 16 and the closing of contact 15-18. It is this time delay that prevents from arc short-circuit during wye to delta switching.

Operation

On energization, the green U indicator light (voltage applied) comes on. Contact 15-16 then immediately moves to the closed position.
Count-down of the programmed time immediately commences.
When the time delay has elapsed, contact 15-16 opens and at the same time the 50 ms lapse, t2, begins after which contact 15-18 moves to the closed position. The yellow R indicator light comes on.
On de-energization, the U and R indicator lights go out and, after the 250 ms resetting time, the device is ready for a new cycle.

Mounting

Mounts on 35 mm DIN rail.

Accessories

for A contactors
 TE5S electronic timer for wye-delta starters, technical data

Technical Data

Types	TE5S-24	TE5S-120	TE5S-240	TE5S-440
Compliance with standards	IEC 60947-5-1, EN 60947-5-1			
Rated insulation voltage U_{i} according to IEC 60947-5-1	440			
Rated operational voltage U_{e} V d.c. according to IEC $60947-5-1$ V a.c.	$\begin{aligned} & 24 \\ & 24 \ldots 240 \end{aligned}$			440
Conventional free air thermal current $\mathrm{I}_{\text {th }} \quad \mathrm{A}$	10			
Rated operational current I_{e} acc. to IEC 60947-5-1				
AC-15 24-120 V a.c. A	5			
220-240 V a.c. A	4			-
380-440 V a.c. A	-			3
$\overline{\text { DC-13 }} 24 \mathrm{~V}$ d.c. A	4			-
Short-circuit protection-gG type fuses A	10			
$\begin{array}{ll}\text { Rated supply voltage } U_{C} & \text { V d.c. } \\ \text { V a.c. }\end{array}$	$\begin{aligned} & 24 \\ & 24 \end{aligned}$	$110 \ldots 120$	$220 \text {... } 240$	$380 \text {... } 440$
- Rated frequency limits Hz	$48 . . .63$			
- Supply voltage range	$0.85 \ldots 1.1 \mathrm{U}_{\mathrm{c}}$			
- Overvoltage protection	Built-in varistor			
- Load factor \%	100			
- Average consumption - in d.c. W	0.7	-	-	-
- in a.c. VA	1.5	3.5	6.5	12.5
Time delay range (t_{1}) selected by switch s	$0.8 \ldots 8$ and $6 \ldots 60$			
- Temperature drift $\quad \%$ per ${ }^{\circ} \mathrm{C}$	-0.2			
- Mechanical setting accuracy	$\pm 15 \%$ of the setting range			
- On-load reiteration accuracy under constant conditions	$\pm 2 \%$ after 1 million operating cycles			
Minimum time lapse (t_{2}) ms	$\begin{aligned} & 50 \\ & 40 \end{aligned}$			
Min. time lapse after 1 million operating cycles ms				
Resetting time (maximum) ms	250			
Front panel display: - green indicator light - yellow indicator light	Energization Output relay activated			

Permissible air temperature	
- for operation	${ }^{\circ} \mathrm{C}$
- for storage	${ }^{\circ} \mathrm{C}$

Vibration withstand acc. to
IEC 60068-2-6, EN 60068-2-6
Shock withstand acc. to
IEC 60068-2-27, EN 60068-2-27

Electrical durability	in millions of op. cycles
Mechanical durability	in millions of op. cycles
On-load maximum switching frequency	cycles/h
Fixing on mounting rail acc. to IEC/EN 60715	
Connecting terminals	
Connecting capacity	
- rigid solid	
- flexible with cable end	1 or $2 \times \mathrm{mm}^{2}$
Tightening torque	or $2 \times \mathrm{mm}^{2}$
Degree of protection	Nm
according to IEC $60947-1 /$ EN $60947-1$ Terminals and IEC 60529 / EN 60529	

$-25 \ldots+60$
$-40 \ldots+85$

3 g from 10 to 300 Hz in the 3 directions
$20 \mathrm{~g} / 11 \mathrm{~ms}$ in directions A and C
$15 \mathrm{~g} / 11 \mathrm{~ms}$ in direction B
1
5

720	600
35×7.5 or 35×15	

(+,-) pozidriv 1 screw

1 ... 2.5
0.75 ... 2.5
0.6 ... 0.8 max.

IP 20
and IEC 60529 / EN 60529

Accessories

Terminal marking and positioning for AE/AL contactors

AL Contactors - D.C. operated
Standard devices without addition of auxiliary contacts

AL9 - AL26-40-00

Other possible contact combinations with auxiliary contacts added by the user

