

Power supply systems have to be highly reliable in most areas of energy management and automation technology.
Often batteries are used for supporting the supply system in case of mains failures. Batteries have limited lifetimes depending on environmental parameters and have to be maintained regularly, which causes efforts and costs.

Using the latest ultra-capacitor technology, ABB offers an innovative and completely maintenance free new product for buffering the 24 V DC supply in case of interrupted mains on the primary side of the switch mode power supply.

The CP-B range is an ultra-capacitor buffer energy storage for power supply units which ensures a short term uninterrupted power supply system. In case of a power loss, the energy stored in the capacitor guarantees that the load is continually provided up to several hundred seconds depending on the load current.

Application example

Characteristics

- 3 buffer modules for buffering 24 V DC: CP-B 24/3.0 (3 A / 1 kWs ${ }^{1}$) CP-B 24/10.0 (10 A / $10 \mathrm{kWs}^{1}$) CP-B 24/20.0 (20 A / $8 \mathrm{kWs}^{1}$)
- CP-B 24/3.0 and CP-B 24/20.0 expandable with additional extension module(s) CP-B EXT. $2\left(2 \mathrm{kWs}{ }^{1}\right.$)
- LEDs for status indication
- Relay contacts for status messaging
- Very high backup times (e.g. with CP-B 24/10.0 up to 8 minutes at 1 A load current)
- Short charging times
- High efficiency, higher than 90\%
- Wide temperature range
- DIN rail mountable, compact enclosures
- Advantages in comparison to battery buffers
- Maintenance free
- No deep discharge
- Temperature resistant
- 【unis approval (UL508, CSA22.2 No 14) ${ }^{2}$
${ }^{1)}$ internal energy buffer; ${ }^{2)}$ pending

2CDC110004C0207

Ultra capacitor based buffer modules
CP-B range

Product selection table

	CP-B 24/3.0	CP-B 24/10.0	CP-B 24/20.0	CP-B EXT. 2
Order code	1SVR427060R0300	1SVR427060R1000	1SVR427060R2000	1SVR427065R0000
Rated input voltage	24 V DC	24 V DC	24 V DC	-
Rated current	3 A DC	10 A DC	20 A DC	-
Energy storage (min.)	1.000 Ws	10.000 Ws	8.000 Ws	2.000 Ws
Typical charging 100 \%	65 s	120 s	68 s	
$\begin{aligned} & \text { lime at load cur- } 0 \% \\ & \text { rent } \end{aligned}$	56 s	82 s	62 s	
Typical buffer 100 \%	14 s	40 s	15 s	
time ${ }^{\text {1 }}$ at load cur- 50 \%	28 s	80 s	30 s	
25 \%	74 s	140 s	60 s	
10 \%	148 s	380 s	150 s	
Dimensions				
Width	60.00 mm	127.00 mm	84.00 mm	60.00 mm
Height	92.50 mm	163.00 mm	192.00 mm	92.50 mm
Depth	116.00 mm	150.00 mm	198.00 mm	116.00 mm

${ }^{1}$) buffering time $=\frac{\text { energy storage } \times 0.9}{\text { current } \times \text { output voltage }}$

ABB

Electronic Protection Devices

for use behind 24 V DC Switch Mode Power Supplies

The protection devices EPD24 extend the ABB product range of modular DIN rail components by electronic overcurrent protection modules for selective protection of 24V DC load circuits.

This protection is achieved by a combination of active electronic current limitation in the case of a short circuit and an overload deactivation from $1.1 \times \mathrm{I}_{\mathrm{n}}$ upwards.

If a fault occurs in a load circuit, the protection device EPD24 will detect this rapidly and reliably, disable the power output transistor and hence interrupt the current flow in the defective circuit. The maximum possible overcurrent is always limited to $1.5 \ldots 1.8$ times the selected rated current. An activation of capacitive loads up to $20,000 \mu \mathrm{~F}$ is possible, deactivation only occurring in the case of overloads or short circuits. Selective deactivation of the defective current circuit means undefined error states and a complete system stop are prevented.
Features

- Selective load protection one, electronic trip characteristics.
- Active current limitation for safe connection of capacitive loads up to $20,000 \mu \mathrm{~F}$ and on overload/short circuit.
- Current ratings 0.5 A... 12 A .
- Reliable overload disconnection with $1.1 \times \mathrm{I}_{\mathrm{N}}$
- Manual ON/OFF button
- Clear status and failure indication through LED and auxiliary contact.
- Integral fail-safe element adjusted to current rating.
- Width per unit only 12.5 mm .
- Rail mounting
- Ease of wiring through busbar LINE+ and 0 V as well as signal bars.
- UL- and CSA-approvals allow international use of the devices.

Selection table

Rated current I_{n} in A	Order details Type code	Order code	bbn 4016779 EAN	Price 1 piece	Price group	Weight 1 piece kg	Pack unit pc.
0.5	EPD24-TB-101-0.5A	2CDE 601101 R2905	829960			0.065	4
1	EPD24-TB-101-1A	2CDE 601101 R2001	829984			0.065	4
2	EPD24-TB-101-2A	2CDE 601101 R2002	830003			0.065	4
3	EPD24-TB-101-3A	2CDE 601101 R2003	830027			0.065	4
4	EPD24-TB-101-4A	2CDE 601101 R2004	830041			0.065	4
6	EPD24-TB-101-6A	2CDE 601101 R2006	830065			0.065	4
8	EPD24-TB-101-8A	2CDE 601101 R2008	830089			0.065	4
10	EPD24-TB-101-10A	2CDE 601101 R2010	830102			0.065	4
12	EPD24-TB-101-12A	2CDE 601101 R2012	830126			0.065	4

Selection table accessories

	Order details Type code	Order code	bbn 4016779 EAN	Price 1 piece	Price group	$\begin{aligned} & \hline \text { Weight } \\ & 1 \\ & \text { piece } \\ & \text { kg } \end{aligned}$	Pack unit pc.
Busbars for LINE+ and 0 V , grey insulation, length $500 \mathrm{~mm}{ }^{1)}$	EPD-BB500	2CDE 605100 R0500	830140			0.20	10
Signal Bars for aux. contacts, grey insulation, length 21 mm	EPD-SB21	2CDE 605200 R0021	830164			0.04	10

1) Max. load with one line entry $I_{\max }=50 \mathrm{~A}$ (recommended: center-feeding) Max. load with two line entries $I_{\max }=63 \mathrm{~A}$

Electronic Protection Devices

Operating data	
Operating voltage $\mathrm{U}_{\mathrm{B}}:$	24 V DC (18...32 V)

Several load outputs must not be connected in parallel

Signal output	
Electrical data	potential-free auxiliary contact max. 30 V DC/0.5 A, min. 10 V DC/10 mA
ON condition LED green	voltage U_{B} applied, switch $S 1$ is in ON position no overload, no short circuit
OFF condition LED off	- device switched off (switch S1 is in OFF position) - no voltage U_{B} applied
Fault condition LED orange	overload condition $>1.1 \times \mathrm{I}_{\mathrm{N}}$ up to electronic disconnection
Fault condition LED red	- electronic disconnection upon overload or short circuit - Device switched off with control signal (switch S1 is in ON position)
Aux. contact	single signal, make contact contact open, terminal 13-14
Fault	signal output fault conditions - no operating voltage U_{B} - ON/OFF switch S1 is in OFF position - red LED lighted (electronic disconnection)

Electronic Protection Devices

General data	
Fail-Safe element	backup fuse for EPD24 not required because of the integral redundant fail-safe element
Housing material	moulded
Mounting	symmetrical rail to EN 50022-35x7.5
Ambient temperature	$0 . . .+50^{\circ} \mathrm{C}$ (without condensation, see EN 60204-1)
Storage temperature	$-20 \ldots+70^{\circ} \mathrm{C}$
Humidity	$96 \mathrm{hrs} / 95 \% \mathrm{RH} / 40^{\circ} \mathrm{C}$ to IEC 60068-2-78, test Cab. climate class 3 K3 to EN 60721
Vibration	3 g , test to IEC 60068-2-6 test Fc
Degree of protection	housing: IP20 DIN 40050 terminals: IP20 DIN 40050
EMC (EMC directive, CE logo)	emission: EN 61000-6-3 susceptibility: EN 61000-6-2
Isolations coordination (IEC 60934)	$0.5 \mathrm{kV} /$ pollution degree 2 reinforced insulation in operating area
Dielectric strength	max. 32 V DC (load circuit)
Isolation resistance (OFF condition)	n / a, only electronic disconnection
Approvals/Declarations of conformity	UL 2367 Solid State Overcurrent Protectors UL 1604, (class I, division 2, groups A, B, C, D) UL 508 CSA C22.2 No. 213 (class I, division 2) CSA C22.2 No. 142 CE logo
Dimensions ($\mathrm{B} \times \mathrm{H} \times \mathrm{T}$)	$12.5 \times 80 \times 83 \mathrm{~mm}$
Weight	approx. 65 g
Terminals	Line+/LOAD+/0V
Screw terminals	M4
Max. cable cross section flexible with wire end ferrule w/wo plastic sleeve	$0.5-10 \mathrm{~mm}^{2}$
Multi-lead connection (2 identical cables) rigid/flexible	$0.5-4 \mathrm{~mm}^{2}$
Flexible with wire end ferrule without plastic sleeve	$0.5-2.5 \mathrm{~mm}^{2}$
Flexible with TWIN wire end ferrule with plastic sleeve	$0.5-6 \mathrm{~mm}^{2}$
Wire stripping length	10 mm
Tightening torque (EN 60934)	$1.5-1.8 \mathrm{Nm}$
Terminals	aux. contacts
Screw terminals	M3
Max. cable cross section flexible with wire end ferrule w/wo plastic sleeve	0.25-2.5 mm ${ }^{\text {2 }}$
Wire stripping length	8 mm
Tightening torque (EN 60934)	0.5 Nm

Table 1: voltage drop, current limitation, max. load current

current rating	typically voltage drop	active current max. load current at 100% ON duty		
I_{N}	$\mathrm{U}_{\text {on }}$ at I_{N}	limitation (typically)	$\mathrm{T}_{\text {ambient }}=40^{\circ} \mathrm{C}$	$\mathrm{T}_{\text {ambient }}=40^{\circ} \mathrm{C}$
0.5 A	70 mV	$1.8 \times \mathrm{I}_{\mathrm{N}}$	0.5 A	0.5 A
1 A	80 mV	$1.8 \times \mathrm{I}_{\mathrm{N}}$	1 A	1 A
2 A	130 mV	$1.8 \times \mathrm{I}_{\mathrm{N}}$	2 A	2 A
3 A	80 mV	$1.8 \times \mathrm{I}_{\mathrm{N}}$	3 A	3 A
4 A	100 mV	$1.8 \times \mathrm{I}_{\mathrm{N}}$	4 A	4 A
6 A	130 mV	$1.8 \times \mathrm{I}_{\mathrm{N}}$	6 A	5 A
8 A	120 mV	$1.5 \times \mathrm{I}_{\mathrm{N}}$	8 A	7 A
10 A	150 mV	$1.5 \times \mathrm{I}_{\mathrm{N}}$	10 A	9 A
12 A	180 mV	$1.3 \times \mathrm{I}_{\mathrm{N}}$	12 A	10.8 A

[^0]2CDC110004C0207

Technical details
EPD 24-TB-101

Time/Current characteristic curve ($\mathrm{T}_{\mathrm{u}}=25^{\circ} \mathrm{C}$)

- The trip time is typically 3 s in the range between 1.1 and $1.8 \times \mathrm{I}_{\mathrm{N}}{ }^{11}$.
- Electronic current limitation occurs at typically $1.8 \times I_{N}{ }^{1}$) which means that under all overload conditions (independent of the power supply and the resistance of the load circuit) the max. overload before disconnection will not exceed $1.8 \times I_{N}{ }^{11}$ times the current rating. Trip time is between 100 ms and 3 sec (depending on overload or at short circuit).
- Without this current limitation a considerably higher overload current would flow in the event of an overload or short circuit.

${ }^{1)}$ Current limitation typically $1.8 \times \mathrm{I}_{\mathrm{N}}$ at $\mathrm{I}_{\mathrm{N}}=0.5 \mathrm{~A} . . .6 \mathrm{~A}$
Current limitation typically $1.5 \times \mathrm{I}_{\mathrm{N}}$ at $\mathrm{I}_{\mathrm{N}}=8 \mathrm{~A}$ or 10 A
Current limitation typically $1.3 \times \mathrm{I}_{\mathrm{N}}$ at $\mathrm{I}_{\mathrm{N}}=12 \mathrm{~A}$
Maximum cable lenghts
EPD24 reliably trips from 0Ω up to max. circuit resistance $R_{\text {max }}$.
Calculation of $\mathbf{R}_{\text {max }}$

Selected rating $I_{N}(A)$	$\mathbf{3}$	$\mathbf{6}$
Operating voltage $U_{S}(V \operatorname{DC})(=80 \% \text { of } 24 \mathrm{~V})^{2)}$	19.2	19.2
Trip current $I_{a b}=1.25 \times I_{N}(A)($ EPD24 trips after 3 s$)$	3.75	7.50
$\mathbf{R}_{\text {max }}(\Omega)=\left(\mathrm{U}_{\mathrm{B}} / \mathrm{I}_{\mathrm{ab}}\right) \mathbf{- 0 . 0 5 0}$	$\mathbf{5 . 0 7}$	$\mathbf{2 . 5 1}$

${ }^{\text {2) }}$ Voltage drop of EPD24 and tolerance of trip point (typically $1.1 \times I_{N}=1.05 \ldots 1.35 \times I_{N}$) have been taken into account

Selection table for the incoming cable lengths with different cable cross-sections

Cable cross section A (mm²)	0.14	0.25	0.34	0.5	0.75	1.00	1.50
Cable length $L(m)$ ($=$ single length)	cable resistance $(\Omega)=\left(\rho_{0} \times 2 \times\right.$ L) / A ${ }^{3}$						
5	1.27	0.71	0.52	0.36	0.24	0.18	0.12
10	2.54	1.42	1.05	0.71	0.47	0.36	0.24
15	3.81	2.14	1.57	1.07	0.71	0.53	0.36
20	5.09	2.85	2.09	1.42	0.95	0.71	0.47
25	6.36	3.56	2.62	1.78	1.19	0.89	0.59
30	7.63	4.27	3.14	2.14	1.42	1.07	0.71
35	8.90	4.98	3.66	2.49	1.66	1.25	0.83
40	10.17	5.70	4.19	2.85	1.90	1.42	0.95
45	11.44	6.41	4.71	3.20	2.14	1.60	1.07
50	12.71	7.12	5.24	3.56	2.37	1.78	1.19
75	19.07	10.68	7.85	5.34	3.56	2.67	1.78
100	25.34	14.24	10.47	7.12	4.75	3.56	2.37
125	31.79	17.80	13.09	8.90	5.93	4.45	2.97
150	38.14	21.36	15.71	10.68	7.12	5.34	3.56
175	44.50	24.92	18.32	12.46	8.31	6.23	4.15
200	50.86	28.48	20.94	14.24	9.49	7.12	4.75
225	57.21	32.04	23.56	16.02	10.68	8.01	5.34
250	63.57	35.60	26.18	17.80	11.87	8.90	5.93

[^1]Example 3: mixed wiring: (Control cabinet --- sensor/actuator level) R1 $=40 \mathrm{~m}$ for $1.5 \mathrm{~mm}^{2}$ and R2 $=5 \mathrm{~m}$ for $0.25 \mathrm{~mm}^{2}$: $R 1=0.95 \Omega, R 2=0.71 \Omega$, total $(R 1+R 2)=1.66 \Omega$

Please note

The user should ensure that the cable cross sections of the relevant load circuit are suitable for the current rating of the EPD24 used. Automatic start-up of machinery after shut down must be prevented (Machinery Directive 98/37/EG and EN 60204-1). In the event of a short circuit or overload the load circuit will be disconnected electronically by the EPD24.

Information on UL approvals/CSA approvals

T

 UL1604
Operating Temperature Code T5

- This equipment is suitable for use in Class I, Division 2, Groups A, B, C and D or non-hazardous locations only

WARNING:

- Exposure to some chemicals may degrade the sealing properties of materials used in the following device: relay Sealant Material:

Generic Name: Modified diglycidyl ether of bisphenol A
Supplier: Fine Polymers Corporation
Type: Epi Fine 4616L-160PK
Casing Material:
Generic Name: Liquid Crystal Polymer
Supplier: Sumitomo Chemical
Type: E4008, E4009, or E6008

RECOMMENDATION:

- Periodically inspect the device named above for any degradation of properties and replace if degradation is found

WARNING - EXPLOSION HAZARD:

- Do not disconnect equipment unless power has been removed or the area is known to be non-hazardous
- Substitution of any components may impair suitability for Class I, Division 2

UL2367
Non-hazardous use
UL 508
Non-hazardous use

CSA C22.2 No. 213 (Class I, Division 2)
CSA C22.2 No. 142

Class 2
Meets requirement for Class 2 current limitation (EPD24 ... -0,5 A/1 A/2 A/3 A)

Technical details
EPD 24-TB-101,

The EPD24 features an integral power distribution system.
The following wiring modes are possible with various pluggable current and signal busbars:

- LINE+ (24 V DC)
- 0 V

Caution: The electronic devices EPD24 require a 0 V connection

- Auxiliary contacts

Mounting procedure

Before wiring insert busbars into protector block. A maximum of 10 connection cycles are permissible using connecting busbars.

Recommendation

After 10 units the busbars should be interrupted and receive a new entry live.
Table of length for busbars
(Order code 2CDE605100R0500)

No. of units	2	3	4	5	6	7	8	9	10
Length of busbar $(\mathrm{mm}) \pm 0.5 \mathrm{~mm}$	22	34.5	47	59.5	72	84.5	97	109.5	122

[^0]: Attention: when mounted side-by-side without convection the ERD24 should not carry more than 80% of its rated load with 100% ON duty due to thermal effects.

[^1]: ${ }^{3)}$ Resistivity of copper $\rho_{o}=0.0178\left(\Omega \times \mathrm{mm}^{2}\right) / \mathrm{m}$
 Example 1: max. length for $1.5 \mathrm{~mm}^{2}$ and $3 \mathrm{~A}: 214 \mathrm{~m}$
 Example 2: max. length for $1.5 \mathrm{~mm}^{2}$ and $6 \mathrm{~A}: 106 \mathrm{~m}$

