DC Circuit switching contactors Type GA75 & GAE75

General

Arc suppression is more difficult in DC than in AC. To choose a contactor, it is necessary to know the current and voltage to be broken as well as the L/R time constant of the power circuit to be controlled.

Here are some typical time constant values: • Non inductive loads such as resistance

furnaces: L/R <u>~</u> 1ms.

L/R <u>~</u> 2 ms. Shunt motors: Series motors: L/R ~ 7.5 ms.

Remark: the addition of a resistor in parallel with an inductive winding makes arc suppression easier.

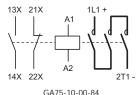
Types

GA75-10 - · · AC operated contactor GAE 75-10 - · · DC operated contactor

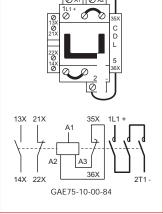
Description

GA and GAE contactors are mounted with arc chutes with permanent magnets specially designed for DC breaking.

The three contactor paths are arranged in series via two supplied and mounted insulated connections (25 mm²).


The GA75 and GAE75 are "single-pole" devices for which the connection polarities, indicated next to the connection terminals, must be respected. See wiring diagram information on next page.

1.131 Low Voltage Products & Systems


GA75 - GAE75

De	Maximu C-1	ım rated opera DC-3	ational current DC	-5		d auxiliary itacts	Catalog	List price	
U _e ≤440V A	U _e ≤600V A	U _e ≤440V A	U _e ≤220V A	U _e ≤440V A	N.O.	N.C.	number		
100 100	75 75	85 85	85 85	35 35	- - 1	- - 1	GA75-10-00-84 GAE75-10-00-81 GAE75-10-11-81	\$ 570 675 705	

Rated insulation voltage \mathbf{U}_{l} = 1000 V d.c. according to IEC 947-4-1. Maximum switching frequencies: 300 operating cycles/h

Coil voltage selection

All AC operated catalog numbers include a 120VAC coil. All DC operated catalog numbers include a 24VDC coil. To select other coil voltages, substitute the code from the Coil Voltage Selection Chart for the two digits after the last dash in the catalog number.

Ex.: A 240VAC coil is required for a GA75 contactor: GA75-10-00-80 A 110VDC coil is required for a GAE75 contactor: GAE75-10-00-86

Coil voltage selection chart

Hz	Cntr	Volts															
	type	12	24	48	110	120	125	208	220	240	277	380	415	440	480	500	600
60	GA		81	83	84	84		34	75	80	42	48	86	86	51	53	55
50	GA		81	83	84				80			85	86			55	
DC	GAE	80	81	83	86		87		88	89							

For other voltages, see page 1.26.

Accessories

Standard A and AE 40 - 75 contactor accessories are suitable for GA75 and GAE75 contactors. Coils are the standard coils for A and AE50 - 75 contactors.

Contacts cannot be changed

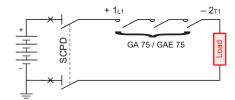
Contacts cannot be changed.

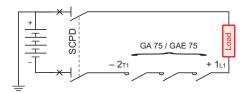
Wiring diagrams

In D.C. circuits, the source to earth (or frame) connection mode is an important element.

Three modes are mainly used:

A – insulated source, i.e. unearthed (or not connected to the frame).


B – source earthed via its central point.


C – source earthed via one of its outer poles.

Modes $\bf A$ and $\bf B$ do not impose any constraints with regard to the distribution of the contactor poles between the two source/load connecting branches. Mode $\bf C$ requirements are therefore suitable for modes $\bf A$ and $\bf B$.

For mode C, all the poles necessary for breaking must be installed in series between the load and the ungrounded source polarity. We recommend this solution for all connection modes.

The above provisions relate to power circuit switching, the SCPD (Short-Circuit Protection Device) must comply with protection rules.

