

DCR300-250

14300 De La Tour Drive · South Beloit, IL 61080 Phone: (815) 624-6915 • Fax: (815) 624-6965 www.americancontrolelectronics.com

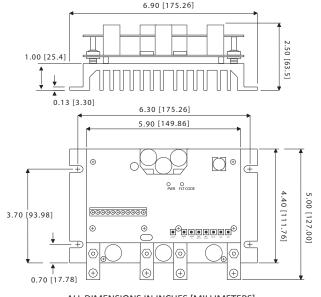
An ISO 9001:2008 Certified Company

Adjustable Speed Drive for Low Voltage PMDC Brush Motors

\sim	fica		
11 = 1			
		\mathbf{u}	

	Source	Armature	Peak	Motor	
	Voltage	Voltage Range	Armature	Horsepower	
Model	(VDC)	(VDC)	Current (Amps)	Range	
DCR300-250	12	Up to 100%	250*	1/6 - 1 1/2	
DCN300-230	24	of Source Voltage		1/3 - 3	
* 5 1 1 1 6					

* Peak current rating for 1 minute. Continuous current rating is 120 amps.


Source Voltage	10 - 30 VDC
Form Factor	1.01 at base speed
Acceleration Time Range	0.2 - 20 seconds
Deceleration Time Range	0.2 - 20 seconds
Analog Input Voltage Range	0 - 5 VDC
Input Impedance (S1 to S2)	>100K ohms
Load Regulation	1% base speed
Speed Range	100:1
Vibration (0 - 50 Hz)	0.5G maximum
(>50 Hz)	0.1G maximum
Ambient Temperature Range	0°C - 40°C
Weight	2.14 lbs

Safety Warnings

READ ALL SAFETY WARNINGS BEFORE INSTALLING THIS EQUIPMENT

- DO NOT INSTALL, REMOVE, OR REWIRE THIS EQUIPMENT WITH POWER APPLIED. Have a qualified electrical technician install, adjust and service this equipment. Follow the National Electrical Code and all other applicable electrical and safety codes, including the provisions of the Occupational Safety and Health Act (OSHA), when installing equipment.
- · Avoid direct contact with the printed circuit board or with circuit elements to prevent the risk of serious injury or fatality. Use a non-metallic screwdriver for adjusting the calibration trim pots. Use approved personal protection equipment and insulated tools if working on this drive with power
- The drive is not diode-protected from reverse battery voltage. You must ensure that the positive terminal is wired to BAT+ and the negative terminal is wired to BAT-.
- · Reduce the chance of an electrical fire, shock, or explosion by proper grounding techniques, over-current protection, thermal protection, and enclosure. Follow sound maintenance procedures.
- Removing DC power is the only acceptable method for emergency stopping. Do not use regenerative braking, decelerating to minimum speed, or coasting to a stop for emergency stopping. They may not stop a drive that is malfunctioning. Removing DC power is the only acceptable method for emergency stopping.
- · Applying and removing DC source voltage is recommended for infrequent starting and stopping of a drive only. Regenerative braking, decelerating to minimum speed, or coasting to a stop is recommended for frequent starts and stops. Frequent starting and stopping can produce high torque. This may cause damage to motors.
- Do not disconnect any of the motor leads from the drive unless power is removed or the drive is disabled. Opening any one lead while the drive is running may destroy the drive.
- Under no circumstances should power and logic level wires be bundled together.
- Be sure potentiometer tabs do no make contact with the potentiometer's body. Grounding the input will cause damage to the drive.
- Do not exceed 30 in-lbs tightening torque on terminals.

Dimensions

ALL DIMENSIONS IN INCHES [MILLIMETERS]

Installation

Mounting

- . Drive components are sensitive to electrostatic discharge. Avoid direct contact with the circuit board. Hold the drive by the heat sink only.
- · Protect the drive from dirt, moisture, and accidental contact.
- · Provide sufficient room for access to the terminal block and calibration trim pots.
- . Mount the drive away from heat sources. Operate the drive within the specified ambient operating temperature range
- · Prevent loose connections by avoiding excessive vibration of the drive.
- Mount the drive with its board in either a horizontal or vertical plane. Four 0.19" (5 mm) wide slots in the heat sink accept #8 pan head screws.
- The heat sink should be earth grounded. Use a star washer beneath the head of at least one of the mounting screws to penetrate the anodized chassis surface and to reach bare metal.
- Keep 2" of clearance on each side of the drive and 4" of clearance above and below the drive.

Wiring

Use 18 - 24 AWG wire for logic wiring.

For DC source (BAT+, BAT-) and motor (A1, A2) wiring, use 4 AWG when in open air and 1 AWG when in a tight enclosed area.

Shielding Guidelines

As a general rule, ACE recommends shielding of all conductors. If it is not practical to shield power conductors, ACE recommends shielding all logic-level leads. If shielding of logic-level leads is not practical, the user should twist all logic leads with themselves to minimize induced noise. It may be necessary to earth ground the shielded cable. If noise is produced by devices other than the drive, ground the shield at the drive end. If noise is generated by the drive, ground the shield at the end away from the drive. Do not ground both ends of the shield

ACE drives require an external line fuse for protection. Use fast acting fuses rated for at least 150% of the maximum armature voltage and current. Fuse the positive terminal

Connections POWER

Connect the pre-charge switch between the positive battery terminal and the PRE-CHARGE connector on the top board. The pre-charge switch helps prevent sparking when the battery is being connected.

Main Contactor

Connect a contactor into the positive battery wiring, Connect the contactor coil to the COIL+ and COIL- on TB501 on the top board. If the drive is enabled, the COIL terminals will output a voltage that engages the main contactor, which will then connect the positive battery terminal to the BAT+ terminal. The advantage of the main contactor is that it serves as an additional safety device to protect against a run away condition, some cases of reverse polarity battery connection, and excessive charging voltages. If no main contactor is desired, do not make any connections to the COIL+ and COILterminals

Connect the DC input power leads to terminals BAT+ (positive) and BAT- (negative). Connecting the DC input power backwards will cause damage to the drive.

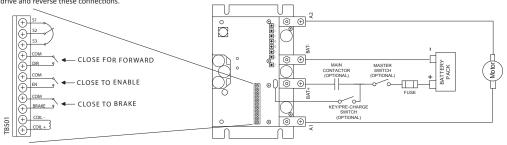
Motor

Connect the DC armature leads to terminals A1 and A2. If the motor does not spin in the desired direction, power down the drive and reverse these connections

Speed Potentiometer

Use a 10K ohm, 1/4 W potentiometer for speed control. Connect the counter-clockwise end of the potentiometer to S1, the wiper to S2, and the clockwise end to S3. If the potentiometer works inversly of desired functionality, (i.e. to increase motor speed, you must turn the potentiometer counterclockwise), power off the drive and swap the S1 and S3 connections.

Brake


Short the COM and BRAKE terminals to regeneratively brake the motor to zero speed. The brake circuit follows the DECEL trim pot. Open the COM and BRAKE terminals to accelerate the motor to set speed. Do not use the brake for emergency stopping.

Fnable

Connect an enable switch to the COM and EN terminals. Close the connection to run and open the connection to coast the motor to a stop. The enable comes into effect regardless of direction. If no switch is desired, jumper the COM and EN terminals.

Direction

Connect a direction switch to the COM and DIR terminals. Close the connection to change direction.

Startup LEDs Calibration

STARTUP

- Verify that no foreign conductive material is present on the printed circuit board.
- 1. Turn the speed adjust potentiometer full counterclockwise (CCW).
- Apply the source voltage.
- 3. Close the enable.
- 4. Slowly advance the speed adjust potentiometer clockwise (CW). The motor slowly accelerates as the potentiometer is turned CW. Continue until the desired speed is reached.
- 5. Remove the source voltage from the drive to coast the motor to a stop.

Power (PWR): Green LED lights whenever DC source voltage is applied to the drive. Status (FLT CODE): Red LED

Solid: The drive is either in Torque Limit or Regenerative Torque Limit.

2 Blinks: The drive is in an under-voltage trip (7.5 VDC).

3 Blinks: The drive is in an over-voltage trip (30.5 VDC).

4 Blinks: The drive has detected a short circuit on the output. 5 Blinks: The drive is in an overheat trip.

Power LED

Power LED

Status

LED

O O O O O O O O O O O

Minimum Speed (MIN SP): The MIN SP setting determines the minimum motor speed when the speed adjust potentiometer is set for minimum speed. It is factory set for zero speed. To calibrate the MIN SP:

- 1. Set the MIN SP trim pot full CCW.
- 2. Set the speed adjust potentiometer for minimum speed.
- 3. Adjust MIN SP until the desired minimum speed is reached or is just at the threshold of

Forward Maximum Speed (MAX FWD SP): The MAX FWD SP setting determines the maximum motor speed in the forward direction when the speed adjust potentiometer is set for maximum speed. It is factory set for maximum motor rated speed. To calibrate the MAX FWD SP:

- 1. Set the MAX FWD SP trim pot full CCW.
- 2. Set the speed adjust potentiometer for maximum speed.
- 3. Adjust MAX FWD SP until the desired maximum speed is reached.

Reverse Maximum Speed (MAX REV SP): The MAX REV SP setting determines the maximum motor speed in the reverse direction when the speed adjust potentiometer is set for maximum speed. It is factory set for maximum motor rated speed. To calibrate the MAX REV SP.

- 1. Set the MAX REV SP trim pot full CCW.
- 2. Set the speed adjust potentiometer for maximum speed.
- 3. Adjust MAX REV SP until the desired maximum speed is reached.

Motoring Torque (MOTOR CL): The MOTOR CL setting determines the maximum torque for accelerating and driving the motor in the forward or reverse directions. To calibrate the MOTOR CL:

- 1. With the power disconnected from the drive, connect a DC ammeter in series with the armature.
- 2. Set the MOTOR CL trim pot to minimum (full CCW).
- 3. Set the speed adjust potentiometer to maximum forward speed (full CW).
- 4. Carefully lock the motor armature. Be sure that the motor is firmly mounted.
- 5. Apply power source. The motor should be stopped.
- Slowly adjust the MOTOR CL trim pot CW until the armature current is 150% of motor rated armature current.
- 7. Turn the speed adjust potentiometer to minimum speed (full CCW).
- 8. Remove power source.
- 9. Remove the stall from the motor.
- 10. Remove the ammeter in series with the motor armature if it is no longer needed.

Alternatively, see the approximate settings below.

Regening Torque (REGEN CL): The REGEN CL setting determines the maximum torque for decelerating the motor and resisting an overhauling load in the forward or reverse directions. Turn the REGEN CL trim pot CW to increase the regen current limit and CCW to decrease the regen current limit. See the approximate settings below.

10 Amps

nc

175 Amps

50 Amps

125 Amps

ps

200 Amps

75 Amps

150 Amps

235 Amps

IR Compensation (IR COMP): The IR COMP setting determines the degree to which motor speed is held constant as the motor load changes. It is factory set for minimum (full CCW). To calibrate the IR COMP:

- 1. Set the IR COMP trim pot full CCW.
- 2. Increase the speed adjust potentiometer un the motor runs at midspeed without load. A handheld tachometer may be used to measure motor speed.
- 3. Load the motor armature to its full load armature current rating. The motor should slow down.
- 4. While keeping the load on the motor, rotate the IR COMP trim pot until the motor runs at the speed measured in step 2. If the motor oscillates (overcompensation), the IR COMP trim pot may be set too high (CW). Turn the IR COMP trim pot CCW to stabilize the motor.
- 5. Unload the motor.

Acceleration (ACCEL): The ACCEL setting determines the time the motor takes to ramp to a higher speed. To calibrate the ACCEL, turn the ACCEL trim pot CW for a longer acceleration time and CCW for a shorter acceleration time.

Deceleration (DECEL): The DECEL setting determines the time the motor takes to ramp to a lower speed. To calibrate the DECEL, turn the DECEL trim pot CW for a longer deceleration time and CCW for a shorter deceleration time.

Copyright 2012 by American Control Electronics[®] - All rights reserved. No part of this document may be reproduced or retransmitted in any form without written permission from American Control Electronics[®]. The information and technical data in this document are subject to change without notice. American Control Electronics[®] makes no warranty of any kind with respect to this material, including, but not limited to, the implied warranties of its merchantability and fitness for a given purpose. American Control Electronics[®] assumes no responsibility for any errors that may appear in this document and makes no commitment to update or to keep current the information in this document.