

14300 De La Tour Drive South Beloit, IL 61080 Phone: (815) 624-6915 Fax: (815) 624-6965

www.americancontrolelectronics.com

Full manuals available online or use QR code

Specifications

	Line	Armature	Continuous	Armature
	Voltage	Voltage Range	Armature	Horsepower
Model	(VAC)	(VDC)	Current (Amps)	Range
••••••	115	0 - 90		1 - 2 1/2
RGF403-25			25.0	,
	230	0 - 180		1 - 5
AC Line Voltage			30 VAC ± 10%, 50/6	0 Hz, single phase
Form Factor				
Field Voltage with 115 VAC line voltage				
with 230 VAC line voltage				
Maximum Field Current				
Acceleration Time Range				0.5 - 8 seconds
Deceleration Time Range				
Analog Input Voltage Range				
Current Range1 - 5, 4 - 20,				
Input Impedance Voltage Signal (0 to ± 25 VDC)				
Voltage Signal (0 to ± 250 VDC)				
Current Signal (1-5 mA)				1K ohms
Current Signal (4-20 mA)				235 ohms
Current Signal (10-50 mA)100 of				
Load Regulation with Armature Feedback				
with Tachogenerator Feedback0.1% base				0.1% base speed
Speed Range with Armature Feedback				
with Tachogenerator Feedback60				60:1
Vibration (0 - 50 Hz)			0.5G maximum	
(>50 Hz)			0.1G maximum	
Ambient Temperature	e Range			
When mounted flat (horizontally) or in an enclosure				
whose volume is between 5 and 8 cubic feet				10°C - 40°C
When mounted upright (vertically) or in an enclosure				
whose volume is greater than 8 cubic feet10°C - 50°C				
Weight4.6 lbs				
Safety Certifications UL/cUL Listed Equipment, file # E13				nt, file # E132235

Safety Warnings

- **READ ALL SAFETY WARNINGS BEFORE INSTALLING THIS EQUIPMENT** • DO NOT INSTALL, REMOVE, OR REWIRE THIS EQUIPMENT WITH POWER APPLIED. Have a qualified electrical technician install, adjust and service this equipment. Follow the National Electrical Code and all other applicable electrical and safety codes, including the provisions of the Occupational Safety and Health Act (OSHA), when installing equipment. • Circuit potentials are at 115 or 230 VAC above earth ground. Avoid direct contact with the printed
- circuit board or with circuit elements to prevent the risk of serious injury or fatality. Use a nonmetallic screwdriver for adjusting the calibration trim pots. Use approved personal protection equipment and insulated tools if working on this drive with power applied.
- Reduce the chance of an electrical fire, shock, or explosion by using proper grounding techniques, over-current protection, thermal protection, and enclosure. Follow sound maintenance procedures.
- over-current protection, thermal protection, and enclosure, Foliow sound maintenance procedures. ACE strongly recommends the installation of a master power switch in the line voltage input. The switch contacts should be rated for 250 VAC and 200% of motor nameplate current.
- Removing AC line power is the only acceptable method for emergency stopping. Do not use
 regenerative braking, decelerating to minimum speed, or coasting to a stop for emergency stopping.
 They may not stop a drive that is malfunctioning. Removing AC line power is the only acceptable
 method for emergency stopping.
- Line starting and stopping (applying and removing AC line voltage) is recommended for infrequent starting and stopping of a drive only. Regenerative braking, decelerating to minimum speed, or coasting to a stop is recommended for frequent starts and stops. Frequent starting and stopping can produce high torque. This may cause damage to motors.
- Do not disconnect any of the motor leads from the drive unless power is removed or the drive is disabled. Opening any one lead while the drive is running may destroy the drive.
- The field output is for shunt wound motors only. Do not make any connections to F1 and F2 when using a permanent magnet motor.
- Change voltage switch settings only when the drive is disconnected from AC line voltage. Make sure
 both switches are set to their correct position. If the switches are improperly set to a lower voltage
 position, the motor will not run at full voltage and may cause damage to the transformer. If the
 switches are improperly set to a higher voltage, the motor will overspeed, which may cause motor
 damage, or result in bodily injury or loss of life.
- Under no circumstances should power and logic level wires be bundled together.
- Be sure potentiometer tabs do no make contact with the potentiometer's body. Grounding the input will cause damage to the drive.

Connections

Line Input

Connect the AC line power leads to terminals L1 and L2, or to a double-throw, single-pole master power switch (recommended). The switch should be rated at a minimum of 250 VAC and 200% of motor current.

POWER

Motor

Connect the DC armature leads to terminals A1 and A2. If the motor does not spin in the desired direction, power down the drive and reverse these connections.

Field

At 115 VAC, connect the field leads to terminals F1 and L1 for a 50 VDC field or to F1 and F2 for a 100 VDC field. At 230 VAC, connect the field leads to terminals F1 and L1 for a 100 VDC field or to F1 and 2 for a 200 VDC field. **Do not make any connections to F1 and F2 if using a permanent magnet motor.**

LOGIC

Speed Potentiometer

Use a 10K ohm, 1/4 W potentiometer for speed control. Connect the counter-clockwise end of the potentiometer to S0, wiper to S2, and the clockwise end to S1. If the potentiometer works inversely of desired functionality, (i.e. to increase motor speed, you must turn the potentiometer counterclockwire), power off the drive and swap the S0 and S1 connections. See the Operation section for alternative wiring setups.

Analog Input Signal Range

Instead of using a speed adjust potentiometer, the RGF403 series drive may be wired to follow an analog input signal. This input signal can be in the form of voltage (0 ± 250 VDC) or current (1 - 5, 4 - 20, 10 - 50 mA). Because these drives have built in isolation, the input signal can be grounded or ungrounded (floating). Connect the analog common to 50. If using an analog rurent signal, connect the analog reference to CS. If using an analog voltage range smaller than 0 ± 25 VDC, connect the analog reference to S2. If using a voltage range larger than 0 ± 25 VDC, connect the analog reference to HV.

Direction

Short terminals DIR and COM to change the direction of the motor. If no direction switch is desired, leave this connection open.

LOGIC

Short the REGEN BRAKE terminals to regeneratively brake the motor to zero speed. The REGEN BRAKE terminals bypass the FWD ACC and REV ACC trim pots. Open the REGEN BRAKE terminals to accelerate the motor to set speed. ACE offers two accessory plug harnesses for connecting to the REGEN BRAKE terminals; part number KTW-0001 [18 in (46 cm) leads] and part number KTW-0002 [36 in (91 cm) leads]. Do not use the inhibit / regen brake for emergency stopping.

Regenerative Brake

Inhibit (Regenertaive Brake)

Short terminals RB1 and RB2 to regeneratively brake the motor to zero speed. The regenerative brake circuitry follows the FWD ACC and REV ACC trim pots. Open terminals RB1 and RB2 to accelerate the motor to set speed. **Do not use the regenerative braking for emergency stopping.**

Enable

Short pins 2 and 3 on terminal SO502 to coast the motor to zero speed. Short pins 3 and 4 on terminal SO502 to accelerate the motor to set speed. If no Enable switch is desired, jumper pins 3 and 4 on SO502 (factory default). ACE offers an accessory plug harness for connecting to the enable terminals; part number KTW-0004 [18 in (46 cm) leads]. **Do not use the enable for emergency stopping.**

Tachogenerator

Using tachogenerator feedback improves speed regulation from approximately 1% of motor base speed to 0.1% of motor base speed. Use tachogenerators rated from 7 VDC per 1000 RPM to 50 VDC per 1000 RPM. Connect the tachogenerator to terminals T1 (positive) and T2 (negative).

+15 and -15

RGF series drive can supply a regulated +15 and -15 VDC voltage (each sourcing 25 mA maximum) with respect to RB1 or T1 to isolated, external devices.

ALL DIMENSIONS IN INCHES [MILLIMETERS]

Startup

STARTIIP

 Verify that no foreign conductive material is present on the printed circuit board. - Ensure that all switches are properly set

- 1. Turn the speed adjust potentiometer full counterclockwise (CCW) or set the analog input voltage or current signal to minimum.
- 2. Apply AC line voltage

and SW502 to either 115 or

armature voltage.

Feedback Select (SW504)

Signal Select (SW505)

input signal is used.

- 3. Enable the drive if using an enable switch on SO502. Otherwise, make sure the jumper is in place.
- 4. Slowly advance the speed adjust potentiometer clockwise (CW) or increase the analog input voltage or current signal. The motor slowly accelerates as the potentiometer is turned CW or as the analog
- input voltage or current signal is increased. Continue until the desired speed is reached. 5. Remove AC line voltage from the drive to coast the motor to a stop.

Operation

Current Signal Offset (CURR SIG OFFSET): The CURR SIG OFFSET setting offsets any drifting the motor may experience when using a current signal input. The trim pot is factory set and should not need adjustment. Do not adjust this trim pot unless you are experiencing drift problems. To calibrate the CURR SIG OFFSET:

- 1. Ensure that the input power is off.
- 2. Set the current input signal to zero.
- 3. Set the CURR SIG OFFSET trim pot to the approximate midrange (25 turn trim pot).
- 4. Apply power and observe the motor shaft.
- 5. If the motor shaft drifts, or slowly rotates with no signal applied, adjust the CURR SIG OFFSET trim pot until the motor shaft stops. The direction and amount of trim pot adjustment depends on the direction of shaft rotation and connection of the motor leads.

Input Adjust (INPUT ADJ): The INPUT ADJ setting scales the input signal. To calibrate the INPUT ADJ: 1. Verify the SW505 is properly set. See the Startup section for settings.

- 2. If using a voltage input signal, set the INPUT ADJ trim pot to the approximate midrange (25 turn tirm pot).
- 3. Apply the minimum input voltage or current signal.
- 4. Adjust the MIN OUT trim pot until the motor runs at the desired minimum speed.
- 5. Apply the maximum input voltage or current signal.
- 6. Adjust the MAX OUT trim pot until the motor runs at the desired maximum speed.
- 7. If a higher maximum speed is desired, re-adjust the INPUT ADJ trim pot CW.
- 8. Repeat steps 3 through 7 until no further recalibration is necessary.

Calibration

Minimum Speed (MIN OUT): The MIN OUT setting determines the minimum motor speed when the speed adjust potentiometer is set for minimum speed. It is factory set for zero speed. The minimum speed applies only when the drive is operating in unidirectional mode. To calibrate the MIN OUT:

- 1. Set the MIN OUT trim pot full CCW.
- 2. Set the speed adjust potentiometer for minimum speed.
- 3. Adjust MIN OUT until the desired minimum speed is reached or is just at the threshold of rotation.

Maximum Speed (MAX OUT): The MAX OUT setting determines the maximum motor speed when the speed adjust potentiometer is set for maximum speed. It is factory set for maximum rated motor speed. To calibrate the MAX OUT:

- 1. Set the MAX OUT trim pot full CCW.
- 2. Set the speed adjust potentiometer for maximum speed.
- 3. Adjust MAX OUT until the desired maximum speed is reached.

Forward Torque (FWD TQ) and Reverse Torque (REV TQ): The FWD TQ and REV TQ settings determine the maximum torque for accelerating and driving the motor in the forward and reverse direction. To calibrate the EWD TO:

- 1. With the power disconnected from the drive, connect a DC ammeter in series with the armature
- 2. Set the FWD TQ trim pot to minimum (full CCW).
- 3. Set the speed adjust potentiometer to maximum forward speed (full CW).
- 4. Carefully lock the motor armature. Be sure that the motor is firmly mounted.
- 5. Apply line power. The motor should be stopped.
- 6. Slowly adjust the FWD TQ trim pot CW until the armature current is 150% of motor rated armature current
- 7. Turn the speed adjust potentiometer to minimum speed (full CCW).
- 8. Remove line power
- 9. Remove the stall from the motor.
- 10. Remove the ammeter in series with the motor armature if it is no longer needed.
- To calibrate the REV TQ:
 - 1. Follow the steps for calibrating the foward torque using the REV TQ trim pot and with the motor set to run in the reverse direction.

IR Compensation (IR COMP): The IR COMP setting determines the degree to which motor speed is held constant as the motor load changes. It is factory set for optimum motor regulation. To calibrate the IR COMP:

- 1. Set the IR COMP trim pot full CCW.
- 2. Increase the speed adjust potentiometer un the motor runs at midspeed without load, A handheld tachometer may be used to measure motor speed.
- 3. Load the motor armature to its full load armature current rating. The motor should slow down. 4. While keeping the load on the motor, rotate the IR COMP trim pot until the motor runs at the speed measured in step 2. If the motor oscillates (overcompensation), the IR COMP trim pot
- may be set too high (CW). Turn the IR COMP trim pot CCW to stabilize the motor. 5. Unload the motor.

Foward Acceleration (FWD ACC): The FWD ACC setting determines the time the motor takes to ramp to a higher speed in the forward direction or to a lower speed in the reverse direction. To calibrate the FWD ACC, turn the FWD ACC trim pot CW to increase the forward acceleration time, and CCW to decrease the forward acceleration time.

Reverse Acceleration (REV ACC): The REV ACC setting determines the time the motor takes to ramp to a higher speed in the reverse direction or to a lower speed in the forward direction. To calibrate the REV ACC, turn the REV ACC trim pot CW to increase the reverse acceleration time, and CCW to decrease the reverse acceleration time.

Tachogenerator Feedback (TACH): The TACH setting, like IR COMP setting, determines the degree to which motor speed is held constant as the motor load changes. To calibrate the TACH trim pot:

- 1. Connect the tachogenerator to T1 and T2. The polarity is positive (+) for T1 and negative (-) for T2 when the motor is running in the forward direction.
- 2. Set the feedback select switch SW503 to ARM for armature feedback.
- 3. Set the speed adjust potentiometer or input voltage or current signal to maximum speed.
- Measure the armature voltage across A1 and A2 using a voltmeter.
- 4. Set the speed adjust potentiometer or input voltage or current signal to zero speed.
- 5. Set SW503 to TACH for tachogenerator feedback.
- 6. Set the IR COMP trim pot to full CCW.
- 7. Set the TACH VOLTS trim pot to full CW.
- 8. Set the speed adjust potentiometer or input voltage or current signal to maximum speed. 9. Adjust the TACH VOLTS trim pot until the armature voltage is the same value as the voltage
- measured in step 3. Check that the TACH VOLTS is properly calibrated. The motor should run at the same set speed when SW503 is set to either ARM or TACH

Deadband (DB): The deadband trim pot determines the time that will elapse between the application of current in one direction before current is applied in the opposite direction. The deadband trim pot affects the resistance that a motor has to changes in shaft position at zero speed. It does this by applying an AC voltage to the motor armature. Deadband is factory calibrated to approximately the 3 o'clock position for 60 Hz AC line operation. Recalibrate the deadband to the 9 o'clock position for 50 Hz operation. If you head motor noise (humming), the deadband might be set too high. Turn the deadband trim pot CCW until the motor noise ceases.

Copyright 2011 by American Control Electronics® - All rights reserved. No part of this document may be reproduced or retransmitted in any form without written permission from American Control Electronics® The information and technical data in this document are subject to change without notice. American Control Electronics® makes no warranty of any kind with respect to this material, including, but not limited to, the implied warranties of its merchantability and fitness for a given purpose. American Control Electronics[®] assumes no responsibility for any errors that may appear in this document and makes no commitment to update or to keep current the information in this document.