American Control Electronics
for PMDC or Field Wound Brush Motors

Safety Warnings

READ ALL SAFETY WARNINGS BEFORE INSTALLING THIS EQUIPMENT DO NOT INSTALL, REMOVE, OR REWIRE THIS EQUIPMENT WITH POWER APPLIED. Have a Electrical Code and all other applicable electrical and safety codes, including the provisions of the Occupational Safety and Heath Act (OSHA), when installing equipment.
Circuit potentials are at 115 or 230 VAC above earth ground. Avoid direct contact with the printed circuit board or with circuit elements to prevent the risk of serious injury or fatality. Use a nonmetallic screwdriver for adjusting the calibration trim pots. Use approved personal protection equipment and insulated tools if working on this drive with power applied.

- Reduce the chance of an electrical fire, shock, or explosion by using proper grounding techniques, over-current protection, thermal protection, and enclosure. Follow sound maintenance procedures.
ACE strongly recommends the installation of a master power switch in the line voltage input. The switch contacts should be rated for 250 VAC and 200% of motor nameplate current.
Removing AC line power is the only acceptable method for emergency stopping. Do not use regenerative braking, decelerating to minimum speed, or coasting to a stop for emergency stopping They may not stop a drive that is malfunctioning. Removing AC line power is the only acceptable method for emergency stopping. Line starting and stopping (applying and removing AC line voltage) is recommended for infrequent starting and stopping of a drive only. Regenerative braking, decelerating to minimum speed, or produce high torauue. This may cause damage to motors.
produce higg torque. His may cause damage to moors. disabled. Opening any one lead while the drive is running may destroy the drive. using a permanent magnet motor both switches are set to their cir osition the motor will hoir cun at full position. If the switches are improperly set to a ower voltage position, the motor will not run at full voltage and may cause damage to the transformer. If the switches are improperly set toa higher voltage,
damage, or result in bodily injury or loss of life.
Under no circumstances should power and logic level wires be bundled together.
Be sure potentiometer tabs do no make contact with the potentiometer's body. Grounding the input will cause damage to the drive.

Connections

ine Inpu
Coct the $A C$ line power leads to terminals $L 1$ and $L 2$, or to a double-throw, single-pole master ower switch (recommended). The switch should be rated at a minimum of 250 VAC and 200% of
-
Motor
朝 direction, power down the drive and reverse these connections.
Field
VDC field, connect the field leads to terminals F 1 and L 1 for a 50 VDC field or to F 1 and F 2 for a 100 2 for a 200 VDC field. Do not make any connections to $F 1$ and $F 2$ if using a permanent magnet motor

Speed Potentiometer

LOGIC

se a 10 K ohm, $1 / 4 \mathrm{~W}$ potentiometer for speed control. Connect the counter-clockwise end of the potentiometer to $S O$, wiper to $S 2$, and the clockwise end to $S 1$. If the potentiometer works counterclockwire), power off the drive and swap the SO and S1 connections. See the Operation section for alternative wiring setups.

Analog Input Signal Range

nstead of using a speed adjust potentiometer, the RGF403 series drive may be wired to follow an analog input signal. This input signal can be in the form of voltage ($0 \pm 250 \mathrm{VDC}$) or current $(1$,
$10-50 \mathrm{~mA}$). Because these drives have built in isolation, the input signal can be grounded or ungrounded (floating). Connect the analog common to SO. If using an analog current signal, connec the analog reference to CS. If using an analog voltage range smaller than $0 \pm 25 \mathrm{VDC}$, connect the analog reference to $S 2$. If using a voltage range larger than $0 \pm 25 \mathrm{VDC}$, connect the analog reference to HV .
irection
hort terminals DIR and COM to change the direction of the motor. If no direction switch is desired,
Short terminals DIR and con
leave this connection open.
nhibit (Regenertaive Brake)
hort the REGEN BRAKE terminals to regeneratively brake the motor to zero speed. The REGEN BRAKE terminals bypass the FWD ACC and REV ACC trim pots. Open the REGEN BRAKE terminals to accelerate
the motor to set speed. ACE offers two accessory plug harnesses for connecting to the REGEN BRAKE terminals; part number KTW-0001 [18 in (46 cm) leads] and part number KTW-0002 [36 in (91 cm) leads]. Do not use the inhibit / regen brake for emergency stopping.

egenerative Brake

Short terminals RB1 and RB2 to regeneratively brake the motor to zero speed. The regenerative brake circuitry follows the FWD ACC and REV ACC trim pots. Open terminals RB1 and RB2 to accelerate the motor to set speed. Do not use the regenerative braking for emergency stopping.

Enable

hort pins 2 and 3 on terminal SO502 to coast the motor to zero speed. Short pins 3 and 4 on terminal SO502 to accelerate the motor to set speed. If no Enable switch is desired, jumper pins 3 and 4 on SO502 (factory default). ACE offers an accessory plug harness for connecting to the enable terminals; part number KTW-0004 [18 in (46 cm) leads]. Do not use the enable for emergency stopping

achogenerator

 speed to 0.1% of motor base speed. Use tachogenerators rated from 7 VDC per 1000 RPM to 50 VDC 1000 RPM . Connect the tachogenerator to terminals T1 (positive) and T2 (negative),
+15 and -15
RGF series drive can supply a regulated +15 and - 15 VDC voltage (each sourcing 25 mA maximum) with respect to RB1 or $T 1$ to isolated, external devices.

Startup

Operation

Calibration

input Voltage Select (SW501, SW502) Set the voltage switches SW501 and SW502 to either 115 or 230 to match the AC line voltage. Armature Voltage Select (SW503) Set the voltage switch SW502 to either armature voltage.

Feedback Select (SW504) Set the feedback select switch SW504 o either ARM for armture feedback or TACH for tachogenerator feedback.

Signal Select (SW505)

Set the signal select switch SW505 to DIP switches ON when a speed adjust potentiometer is used. Set only DIP switch 1 (CFVS) ON when a voltage input signal is used. Set only DIP switch 2 ON when a 1-5 mA current input signal is used Set only DIP switch 3 ON when a $4-20 \mathrm{~mA}$ witch 40 N when a $10-50 \mathrm{~mA}$ current input signal is used.

STARTUP
STARTUP
Verify that no foreign conductive material is present on the printed circuit board.
Ensure that all switches are properly set.

1. Turn the speed adjust potentiometer full counterclockwise (CCW) or set the analog input voltage or current signal to minimum.
2. Apply AC line voltage.
3. Enable the drive if using an enable switch on SO502. Otherwise, make sure the jumper is in place. Slowly advance the speed adjust potentiometer clockwise (CW) or increase the analog input voltage
or current signal. The motor slowly accelerates as the potentiometer is turned CW or as the analog input voltage or current signal is increased. Continue until the desired speed is reached.
4. Remove AC line voltage from the drive to coast the motor to a stop.

Current Signal Offset (CURR SIG OFFSET): The CURR SIG OFFSET setting offsets any drifting the motor may experience when using a current signal input. The trim pot is factory set and should not need adjustment Do not adjust this trim pot unless you are experiencing drift problems. To calibrate the CURR SIG OFFSET:

1. Ensure that the input power is off.
2. Set the current input signal to zero.
3. Set the CURR SIG OFFSET trim pot to the approximate midrange (25 turn trim pot). 4. Apply power and observe the motor shaft.
4. If the motor shaft drifts, or slowly rotates with no signal applied, adjust the CURR SIG OFFSET depends on the direction of shaft rotation and amount of trim pot adjustment depends on the direction of shaft rotation and connection of the motor leads.

Input Adjust (INPUT ADJ): The INPUT ADJ setting scales the input signal. To calibrate the INPUT ADJ;

1. Verify the SW505 is properly set. See the Startup section for settings.
2. If using a voltage input signal, set the INPUT ADJ trim pot to the approximate midrange (25 turn tirm pot).
3. Apply the minimum input voltage or current signal.
4. Adjust the MIN OUT trim pot until the motor runs at the desired minimum speed. 5. Apply the maximum input voltage or current signal.
5. Adjust the MAX OUT trim pot until the motor runs at the desired maximum speed
. F igher maximum speed is desired, re-adust the INPUT ADJ trim pot CW.
6. Repeat steps 3 through 7 until no further recalibration is necessary.

Copyright 2011 by American Control Electronics ${ }^{\circledR}$ - All rights reserved. No part of this document may be reproduced or retransmitted in any form without written permission from American Control Electronics $®$. The information and technical data in this document are subject to change without notice. America Control Electronics ${ }^{\circledR}$ makes no warranty of any kind with respect to this material, including, but no limited to, the implied warranties of its merchantability and fitness for a given purpose. America

