

PWP Series

USER MANUAL

PWP100-2

PWP100-2-QDT

PWP100-5

PWP100-10

PWP101-2

PWP101-5

PWP101-10

Dear Valued Consumer:

Congratulations on your purchase of the **PWP Series** drive. This User Manual was created for you to get the most out of your new device and assist with the initial setup. Please visit www.americancontrolelectronics.com to learn more about our other drives

Thank you for choosing American Control Electronics®!

© 2012 American Control Electronics®. All rights reserved.

No part of this manual may be reproduced or transmitted in any form without written permission from American Control Electronics*. The information and technical data in this document are subject to change without notice. American Control Electronics* and its divisions make no warranty of any kind with respect to this material, including, but not limited to, the implied warranties of its merchantability and fitness for a given purpose. American Control Electronics* and its divisions assume no responsibility for any errors that may appear in this manual and make no commitment to update or to keep current the information in this manual.

Safety First!

SAFETY WARNINGS

Text in gray boxes denote important safety tips or warnings. Please read these instructions carefully before performing any of the procedures contained in this manual.

- DO NOT INSTALL, REMOVE, OR REWIRE THIS EQUIPMENT WITH POWER APPLIED. Have a qualified electrical technician install, adjust and service this equipment. Follow the National Electrical Code and all other applicable electrical and safety codes, including the provisions of the Occupational Safety and Health Act (OSHA), when installing equipment.
- Reduce the chance of an electrical fire, shock, or explosion by using proper grounding techniques, over-current protection, thermal protection, and enclosure. Follow sound maintenance procedures.

It is possible for a drive to run at full speed as a result of a component failure. AMERICAN CONTROL ELECTRONICS® (ACE) strongly recommends the installation of a master switch in the main power input to stop the drive in an emergency.

Circuit potentials are at 115 VAC or 230 VAC above earth ground. Avoid direct contact with the printed circuit board or with circuit elements to prevent the risk of serious injury or fatality. Use a non-metallic screwdriver for adjusting the calibration trim pots. Use approved personal protection equipment and insulated tools if working on this drive with power applied.

i

Table of Contents

Section 1. Specifications	1
Suffix Definitions	2
Section 2. Dimensions	3
Section 3. Installation	7
Mounting	7
Heat Sinking	8
Speed Adjust Potentiometer	
Wiring	
Shielding Guidelines	
Line Fusing	
Connections	
Section 4. Operation	
Before Applying Power	
Select Jumpers	
Manual/Signal Header (SW501) (PWP401 models only)	
Startup	
Starting and Stopping Methods	
Line Starting and Stopping Dynamic Braking	
Inhibit Terminals (-QDT model only)	
Decelerating to Minimum Speed	
Section 5. Calibration	
Minimum Speed (MIN SPD) (PWP101, -QDT models only)	
Maximum Speed (MAX SPD) (PWP101, -QD1 models only)	
Signal Adjust (SIGNAL ADJUST) (PWP101 models only)	
Torque (CURRENT LIMIT, CUR LIMIT, or TORQUE)	
IR Compensation (IR COMP)	
Acceleration/Deceleration (ACCEL/DECEL)(PWP100-xx models	
only)	35
Section 6. Application Notes	36
Multiple Fixed Speeds	36
Adjustable Speeds Using Potentiometers In Series	
Independent Adjustable Speeds	

Section 8. Troubleshooting Before Troubleshooting	
ReversingReversing with a CLD100-1 Controller	
Single Speed Potentiometer Control Of Multiple Drives	
Leader-Follower Application	41
RUN/JOG Switch - Inhibit Connection (-QDT Models) Run/JOG Switch - Potentiometer Connection	

List of Tables

Table 1	Recommended Line Fuse Sizes	12
Table 2	Minimum Recommended Dynamic Brake Resistor Values .	26

List of Figures

Figure 1	PWP100-2, PWP100-5, and PWP100-10 Dimensions	3
Figure 2	PWP100-2-QDT Dimensions	. 4
Figure 3	PWP101-2, PWP101-5, and PWP101-10 Dimensions	5
Figure 4	HSK-0001 Dimensions	. 6
Figure 5	Speed Adjust Potentiometer	9
Figure 6	Quick-Disconnect Terminal Block	.14
Figure 7	PWP100-2, PWP100-5, and PWP100-10 Connections	.16
Figure 8	PWP100-2-QDT Connections	.17
Figure 9	PWP101-2, PWP101-5, and PWP101-10 Connections	.18
Figure 10	PWP100 Analog Input Signal Connections	.19
Figure 11	PWP101 Analog Input Signal Connections	20
Figure 12	Manual/Signal Jumper	22
Figure 13	Dynamic Brake Wiring	26
Figure 14	Run/Decelerate to Minimum Speed Switch	.28
Figure 15	Recommended CURRENT LIMIT and IR COMP Settings	.34
Figure 16	Multiple Fixed Speeds	36
Figure 17	Adjustable Fixed Speeds Using Potentiometers In Series	.37
Figure 18	Independent Adjustable Speeds	.38
Figure 19	RUN/JOG Switch Option #1 - Connection to Inhibit	.39
Figure 20	RUN/JOG Switch Option #2 - Connection to Speed Adjust	
	Potentiometer	
Figure 21	Leader-Follower Application	41
Figure 22	Single Speed Potentiometer Control Of Multiple Drives	.42
Figure 23	Reversing Circuit Wiring	.43
Figure 24	Reversing with a CLD100-1	44

Section 1. Specifications

Model	Maximum Armature Current (ADC)	HP Range with 130 VDC Motor	Enclosure
PWP100-2 PWP100-2-QDT PWP101-2	2	1/20 - 1/6	Chassis Chassis Chassis
PWP100-5 PWP101-5	5	1/6 - 1/2	Chassis Chassis
PWP100-10* PWP101-10*	10	1/2 - 1	Chassis Chassis

 Heat sink kit part number HSK-0001 must be used when the continuous current output is over 5 amps.

AC Line Voltage $115 \ \text{VAC} \pm 10\% \\ 50/60 \ \text{Hz}, \text{single phase}$

DC Armature Voltage 0 - 130 VDC

Acceleration Time Range

 PWP100 models
 0.5 - 6 seconds

 PWP101 models and PWP100-2-QDT
 1 second

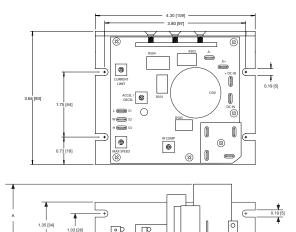
Deceleration Time Range

PWP100 models coast to a stop - 6 seconds PWP101 models and PWP100-2-QDT coast to a stop

Analog Input Range

 PWP100 models (Signal must be isolated; S1 to S2)
 0 - 10 VDC

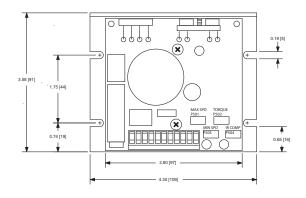
 PWP100-2-QDT (Signal must be isolated; S1 to S2)
 0 - 5 VDC

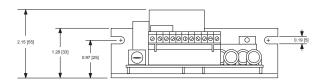

 PWP101 models (Signal may be isolated or non-isolated: S1 to S2)
 0 - 10 VDC

***************************************	·····
Input Impedance (S1 to S2) PWP100 models PWP100-2-QDT PWP101 models	10K ohms > 100K ohms > 2K ohms
Form Factor	1.05
Load Regulation	1% base speed or better
Speed Range	80:1
Vibration	0.5G maximum (0 - 50 Hz) 0.1G maximum (> 50 Hz)
Safety Certification	UL Recognized Component, File # E132235 CSA Certified Component, File # LR41380
Ambient Temperature Range	10°C - 40°C

Suffix Definitions

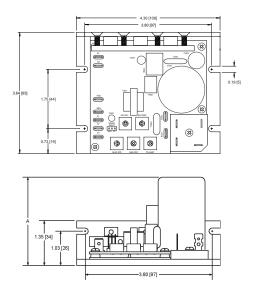
 -QDT: Basic Drive with Current Limit and Power LEDs, Line Fuse, Inhibit, MIN SPD trim pot, and Quick Disconnect Terminal, less the Accel/Decel trim pot.


Section 2. Dimensions

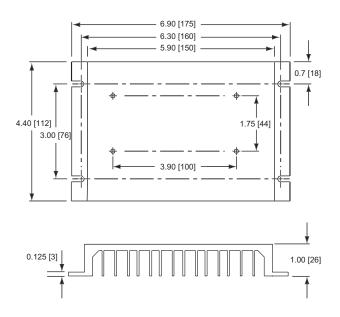


MODEL	DIMENSION "A" HEIGHT
PWP100-2	1.77 [45]
PWP100-5	2.36 [60]
PWP100-10	2.88 [73]

ALL DIMENSIONS IN INCHES [MILLIMETERS]


Figure 1. PWP100-2, PWP100-5, and PWP100-10 Dimensions

ALL DIMENSIONS IN INCHES [MILLIMETERS]


Figure 2. PWP100-2-QDT Dimensions

MODEL	DIMENSION "A" HEIGHT
PWP101-2	1.77 [45]
PWP101-5	2.36 [60]
PWP101-10	2.88 [73]

ALL DIMENSIONS IN INCHES [MILLIMETERS]

Figure 3. PWP101-2, PWP101-5, and PWP101-10 Dimensions

ALL DIMENSIONS IN INCHES [MILLIMETERS]

Figure 4. HSK-0001 Dimensions

Section 3. Installlation

Do not install, rewire, or remove this control with input power applied. Failure to heed this warning may result in fire, explosion, or serious injury. Make sure you read and understand the Safety Precautions on page i before attempting to install this product.

Mounting

- Drive components are sensitive to electrostatic discharge. Avoid direct contact with the circuit board. Hold the drive by the chassis or heat sink only.
- Protect the drive from dirt, moisture, and accidental contact.
- Provide sufficient room for access to the terminals and calibration trim pots.
- Mount the drive away from heat sources. Operate the drive within the specified ambient operating temperature range.
- Prevent loose connections by avoiding excessive vibration of the drive.
- Mount the drive with its board in either a horizontal or vertical plane. Six 0.19" (5 mm) wide slots in the chassis accept #8 pan head screws. Fasten either the large base or the narrow flange of the chassis to the subplate.
- The chassis should be earth grounded. Use a star washer beneath the head of at least one of the mounting screws to penetrate the anodized surface and to reach bare metal.

7

PWP Series

Heat Sinking

The PWP series drives PWP100-10 and PWP101-10 require an additional heat sink when the continuous armature current is above 5 amps. Use ACE heat sink kit part number HSK-0001. All other chassis drives have sufficient heat sinking in their basic configuration. Use a thermally conductive heat sink compound (such as Dow Corning® 340 Heat Sink Compound) between the chassis and the heat sink surface for optimum heat transfer.

Speed Adjust Potentiometer

Be sure that the potentiometer tabs do not make contact with the potentiometer's body. Grounding the input will cause damage to the drive.

Mount the speed adjust potentiometer through a 0.38 in. (10 mm) hole with the hardware provided (Figure 5). Install the circular insulating disk between the panel and the 10K ohm speed adjust potentiometer.

Twist the speed adjust potentiometer wires to avoid picking up unwanted electrical noise. If the speed adjust potentiometer wires are longer than 18 in. (46 cm), use shielded cable. Keep the speed adjust potentiometer wires separate from power leads (L1, L2, A1, A2).

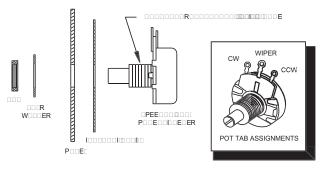


Figure 5. Speed Adjust Potentiometer

Wiring

Do not install, rewire, or remove this control with input power applied. Failure to heed this warning may result in fire, explosion, or serious injury.

Circuit potentials are at 115 VAC above ground. To prevent the risk of injury or fatality, avoid direct contact with the printed circuit board or with circuit elements.

Do not disconnect any of the motor leads from the drive unless power is removed or the drive is disabled. Opening any one motor lead while the drive is running may destroy the drive.

 Use 18 - 24 AWG wire for logic wiring. Use 14 - 16 AWG wire for AC line and motor wiring.

Shielding Guidelines

Under no circumstances should power and logic level leads be bundled together. Induced voltage can cause unpredictable behavior in any electronic device, including motor controls.

As a general rule, AMERICAN CONTROL ELECTRONICS® (ACE) recommends shielding of all conductors. If it is not practical to shield power conductors, ACE recommends shielding all logic-level leads. If shielding of all logic-level leads is not practical, the user should twist all logic leads with themselves to minimize induced noise.

It may be necessary to earth ground the shielded cable. If noise is produced by devices other than the drive, ground the shield at the drive end. If noise is generated by a device on the drive, ground the shield at the end away from the drive. Do not ground both ends of the shield.

Shielding Guidelines (continued)

If the drive continues to pick up noise after grounding the shield, it may be necessary to add AC line filtering devices, or to mount the drive in a less noisy environment.

Logic wires from other input devices, such as motion controllers and PLL velocity controllers, must be separated from power lines in the same manner as the logic I/O on this drive.

Line Fusing

ACE drives should be fused for protection. Use fast acting fuses rated for 120 VAC or higher and 150% of maximum armature current. Fuse HOT L1 only. Table 1 on page 12 lists the recommended line fuse sizes.

Model PWP100-2-QDT is preinstalled with a 5 amp line fuse in fuse holder FU501.

Table 1. Recommended Line Fuse Sizes

90 / 130 VDC	Maximum DC	AC Line
Motor	Armature Current	Fuse Size
Horsepower	(amps)	(amps)
1/20	0.5	1
1/15	0.8	1.5
1/8	1.5	3
1/6	1.7	3
1/4	2.5	5
1/3	3.5	8
1/2	5.0	10
3/4	7.5	15
1	10	15

ACE offers fuse kits. See Section 9: Accessories and Replacement parts on page 48 for fuse kit part numbers.

Connections

Do not connect this equipment with power applied. Failure to heed this warning may result in fire, explosion, or serious injury.

ACE strongly recommends the installation of a master power switch in the voltage input line, as shown in Figure 7 (page 16) and Figure 8 (page 17). The switch contacts should be rated at a minimum of 200% of motor nameplate current and 250 volts.

Quick-Disconnect Terminal Block (-QDT Drives Only)

The quick-disconnect terminal block, found only on -QDT drives, is composed of a 8-pin header block and 8-screw terminal plug (Figure 6 on page 14). To use the quick-disconnect terminal block:

- 1. Carefully pull terminal plug from header block.
- With a small flat-head screwdriver, turn terminal plug screw counterclockwise to open wire clamp.
- 3. Insert stripped wire into the large opening in front of the plug.
- 4. Turn the terminal plug screw clockwise to clamp the wire.
- Repeat steps 2–4 for each terminal until all connections are made.
- 6. Insert plug into header until securely fastened.

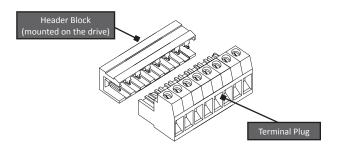


Figure 6. Quick-Disconnect Terminal Block

Power Input

Connect the AC line power leads to terminals L1 and L2. ACE recommends the use of a single-throw, double-pole master power switch. The switch should be rated at a minimum of 250 volts and 200% of motor current. Refer to Figure 7 on page 16.

Motor

ACE drives supply motor armature voltage from A+ / A1 and A- / A2 terminals, where A+ / A1 is positive with respect to A- / A2. If the motor does not spin in the desired direction, remove power and reverse the A+ / A1 and A- / A2 connections.

Connect a DC motor to terminals A1 and A2 as shown in Figure 7 on page 16. Ensure that the motor voltage rating is consistent with the drive's output voltage.

Speed Adjust Potentiometer

Use a 10K ohm, 1/4 W potentiometer for speed control. Connect the counter-clockwise end of the potentiometer to S1, the wiper to S2, and the clockwise end to S3. If the potentiometer works inversely of the desired functionality (e.g. to increase motor speed you must turn the potentiometer counterclockwise), power off the drive and swap the S1 and S3 connections. Refer to Figure 7 on page 16.

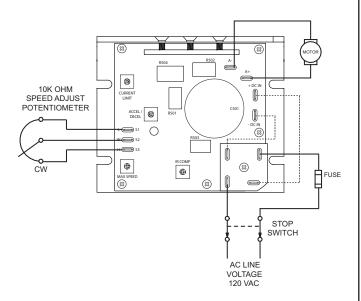


Figure 7. PWP100-2, PWP100-5, and PWP100-10 Connections

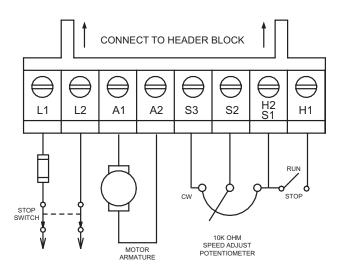


Figure 8. PWP100-2-QDT Connections

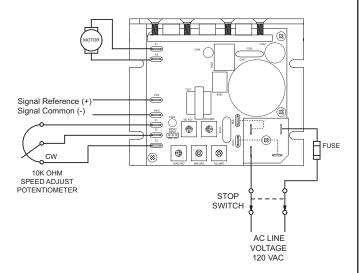


Figure 9. PWP101-2, PWP101-5, and PWP101-10 Connections

Analog Input Follower (PWP100 models)

Instead of using a speed adjust potentiometer, the drive may be wired to follow an analog input voltage signal that is isolated from earth ground (Figure 10). Connect the signal common (–) to S1. Connect the signal input (+) to S2. Make no connection to S3. A potentiometer can be used to scale the analog input voltage. An interface device, such as ACE model ISO101-1, may be used to scale and isolate an analog input voltage.

An analog input voltage range of 0–10 VDC is required to produce an armature voltage range of 0–130 VDC with 115 VAC line voltage, or 0-240 VDC with 230 VAC line voltage.

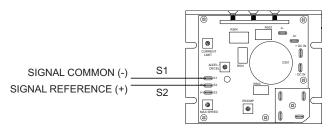


Figure 10. PWP100 Analog Input Signal Connections

Analog Input Signal (PWP101 models)

Instead of using a speed adjust potentiometer, the drive may be wired to follow an analog input voltage signal that is either isolated or non-isolated from earth ground. Connect the signal common (-) to NEG. Connect the signal input (+) to POS. Refer to Figure 11.

Make sure SW501 is jumpered for SIG mode. Refer to Figure 12 on page 22 for switch/jumper SW501 settings and location.

An analog input voltage range of 0–10 VDC is required to produce an armature voltage range of 0–130 VDC with 115 VAC line voltage.

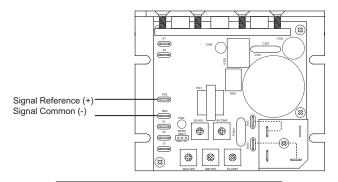


Figure 11. PWP101 Analog Input Signal Connections

Section 4. Operation

Dangerous voltages exist on the drive when it is powered. BE ALERT. High voltages can cause serious or fatal injury. For your safety, use personal protective equipment (PPE) when operating this drive.

If the motor or drive does not perform as described, disconnect the AC line voltage immediately. Refer to the Troubleshooting section, page 45, for further assistance.

Before Applying Power

- Verify that no foreign conductive material is present on the printed circuit board.
- 2. Ensure that all jumpers are properly set (PWP101 only).

Select Jumpers

Manual/Signal Select (SW501) (PWP401 models only)

Place a jumper on the Manual/Signal select (SW501) to set the drive for manual input (MAN) or signal input (SIG). See Figure 12 for settings and location.

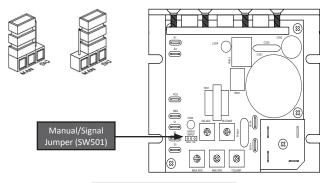


Figure 12. Manual/Signal Jumper

Startup

- Turn the speed adjust potentiometer full counterclockwise (CCW) or set the input voltage signal to minimum.
- 2. Apply AC line voltage.
- Slowly advance the speed adjust potentiometer clockwise (CW) or increase the input voltage signal. The motor slowly accelerates as the potentiometer is turned CW or as the input voltage signal is increased. Continue until the desired speed is reached.
- Remove AC line voltage from the drive to coast the motor to a stop.

Starting and Stopping Methods

Dynamic braking, coasting to a stop, or decelerating to minimum speed is recommended for frequent starts and stops. Do not use any of these methods for emergency stopping. They may not stop a drive that is malfunctioning. Removing AC line power (both lines) is the only acceptable method for emergency stopping.

For this reason, ACE strongly recommends installing an emergency stop switch on both AC line inputs (see Figures 7, 8, and 9 on pages 16 through 18).

Frequent starting and stopping can produce high torque. This may cause damage to motors, especially gearmotors that are not properly sized for the application.

Automatic Restart Upon Power Restoration

All drives automatically run to set speed when power is applied. This assumes the inhibit is not active on the -QDT option.

Line Starting and Stopping

Line starting and stopping (applying and removing AC line voltage) is recommended for infrequent starting and stopping of a drive only. When AC line voltage is applied to the drive, the motor accelerates to the speed set by the speed adjust potentiometer or analog signal. When AC line voltage is removed, the motor coasts to a stop.

Dynamic Braking

Wait for the motor to completely stop before switching back to RUN. This will prevent high armature currents from damaging the motor or drive.

Dynamic braking may be used to rapidly stop a motor (Figure 13 on page 26). For the RUN/BRAKE switch, use a two pole, two position switch rated for at least the armature voltage rating and 150% of the armature current rating. For the dynamic brake resistor, use a 40 watt minimum, high power, wirewound resistor.

Sizing the dynamic brake resistor depends on load inertia, motor voltage, and braking time. Use a lower-value, higher-wattage dynamic brake resistor to stop a motor more rapidly. Refer to Table 2 on page 26 for recommended dynamic brake resistor sizes.

Table 2. Minimum Recommended Dynamic Brake Resistor Values

Motor Armature Voltage	Dynamic Brake Resistor Value
130 VDC	15 ohms
240 VDC	30 ohms

For motors rated 1/17 horsepower and lower, a brake resistor is not necessary since the armature resistance is high enough to stop the motor without demagnetization. Replace the dynamic brake with 12-gauge wire.

Figure 13. Dynamic Brake Wiring

Inhibit Terminals (-QDT model only)

Short the inhibit terminals (H1 and H2/S1) to coast the motor to minimum speed (see Figure 8 on page 17 for inhibit wiring connection). Open the inhibit terminals to accelerate the motor to set speed.

Twist inhibit wires and separate them from power-carrying wires or sources of electrical noise. Use shielded cable if the inhibit wires are longer than 18 inches (46 cm). If shielded cable is used, ground only one end of the shield to earth ground. Do not ground both ends of the shield.

Decelerating to Minimum Speed

The switch shown in Figure 14 may be used to decelerate a motor to a minimum speed. Closing the switch between S1 and S2 decelerates the motor from set speed to a minimum speed determined by the MIN SPD trim pot setting. If the MIN SPD trim pot is set full CCW, the motor decelerates to zero speed when the switch between S1 and S2 is closed. The DECEL trim pot setting determines the rate at which the drive decelerates. By opening the switch, the motor accelerates to set speed at a rate determined by the ACCEL trim pot setting.

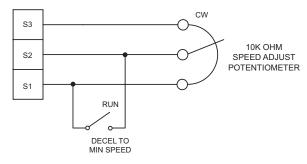


Figure 14. Run/Decelerate to Minimum Speed Switch

Section 5. Calibration

Dangerous voltages exist on the drive when it is powered. When possible, disconnect the voltage input from the drive before adjusting the trim pots. If the trim pots must be adjusted with power applied, use insulated tools and the appropriate personal protection equipment. BE ALERT. High voltages can cause serious or fatal injury.

PWP series drives have user-adjustable trim pots. Each drive is factory calibrated to its maximum current rating. Readjust the calibration trim pot settings to accommodate lower current rated motors.

All adjustments increase with CW rotation, and decrease with CCW rotation. Use a non-metallic screwdriver for calibration. Each trim pot is identified on the printed circuit board.

Minimum Speed (MIN SPD) (PWP101, -QDT models only)

The MIN SPD setting determines the minimum motor speed when the speed adjust potentiometer or input voltage signal is set for minimum speed. It is factory set for zero speed.

To calibrate the MIN SPD:

- 1. Set the MIN SPD trim pot full CCW.
- Set the speed adjust potentiometer or input voltage signal for minimum speed.
- Adjust MIN SPD until the desired minimum speed is reached or is just at the threshold of rotation.

Maximum Speed (MAX SPD)

The MAX SPD setting determines the maximum motor speed when the speed adjust potentiometer or input voltage signal is set for maximum speed.

To calibrate MAX SPD:

- Set the MAX SPD trim pot full CCW.
- Set the speed adjust potentiometer or input voltage signal for maximum speed.
- 3. Adjust MAX SPD until the desired maximum speed is reached.

Note: Check the MIN SPD and MAX SPD adjustments after recalibrating to verify that the motor runs at the desired minimum and maximum speed.

SIGNAL ADJUST (SIGNAL ADJUST) (PWP101 models only)

The SIGNAL ADJUST setting determines the maximum motor speed when the input voltage signal is set for maximum speed.

To calibrate SIGNAL ADJUST:

- Set the SIGNAL ADJUST trim pot full CCW.
- 2. Set the input voltage signal for maximum speed.
- Adjust SIGNAL ADJUST until the desired maximum speed is reached.

Torque (CURRENT LIMIT, CUR LIMIT, or TORQUE)

CURRENT LIMIT should be set to 150% of motor nameplate current rating. Continuous operation beyond this rating may damage the motor. If you intend to operate beyond the rating, contact your ACE representative for assistance.

The CURRENT LIMIT setting determines the maximum torque for accelerating and driving the motor. To calibrate CURRENT LIMIT, refer to the recommended CURRENT LIMIT settings in Figure 15 on page 34 or use the following procedure:

- With the power disconnected from the drive, connect a DC ammeter in series with the armature.
- Set the CURRENT LIMIT trim pot to minimum (full CCW).
- Set the speed adjust potentiometer or input voltage signal to maximum speed.
- Carefully lock the motor armature. Be sure that the motor is firmly mounted.
- 5. Apply line power. The motor should be stopped.
- 6. Slowly adjust the CURRENT LIMIT trim pot CW until the armature current is 150% of motor rated armature current.
- Turn the speed adjust potentiometer CCW or decrease the input voltage signal.
- 8. Remove line power.
- 9. Remove the stall from the motor.
- Remove the ammeter in series with the motor armature if it is no longer needed.

IR Compensation (IR COMP)

The IR COMP setting determines the degree to which motor speed is held constant as the motor load changes.

Use the following procedure to recalibrate the IR COMP setting:

- Set the IR COMP trim pot to minimum (full CCW).
- Increase the speed adjust potentiometer or input voltage signal until the motor runs at midspeed without load (for example, 900 RPM for an 1800 RPM motor). A handheld tachometer may be used to measure motor speed.
- Load the motor armature to its full load armature current rating.
 The motor should slow down.
- 4. While keeping the load on the motor, rotate the IR COMP trim pot until the motor runs at the speed measured in step 2. If the motor oscillates (overcompensation), the IR COMP trim pot may be set too high (CW). Turn the IR COMP trim pot CCW to stabilize the motor.
- 5. Unload the motor.

See Figure 15 on page 34 for recommended IR COMP settings.

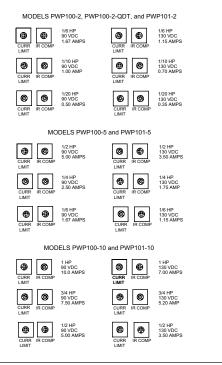


Figure 15. Recommended CURRENT LIMIT and IR COMP Settings (actual settings may vary with each application)

Acceleration / Deceleration (ACCEL/DECEL) (PWP100-xx models only)

The ACCEL/DECEL setting determines the time the motor takes to ramp to a lower or higher speed. See Specifications on page 1 for approximate acceleration and deceleration times. ACCEL/DECEL is factory set for the shortest acceleration/ deceleration time (full CCW).

To set the acceleration / deceleration time:

- Set the speed adjust potentiometer or input voltage signal for minimum speed. The motor should run at minimum speed.
- Set the speed adjust potentiometer or input voltage signal for maximum speed. Measure the time it takes the motor to go from minimum to maximum speed.
- If the time measured in step 2 is not the desired acceleration time, turn the ACCEL/DECEL trim pot CW for a longer acceleration time or CCW for a faster acceleration time. Repeat steps 1 through 2 until the acceleration time is correct.

Section 6. Application Notes

Multiple Fixed Speeds

Replace the speed adjust potentiometer with a series of resistors with a total series resistance of 10K ohms (Figure 16). Add a single pole, multiposition switch with the correct number of positions for the desired number of fixed speeds.

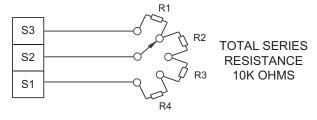


Figure 16. Multiple Fixed Speeds

Adjustable Speeds Using Potentiometers In Series

Replace the speed adjust potentiometer with a series of potentiometers with a total series resistance of 10K ohms (Figure 17). Add a single pole, multi-position switch with the correct number of positions for the desired number of fixed speeds.

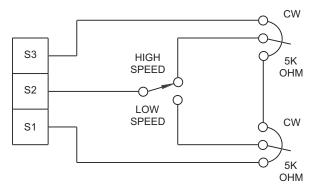


Figure 17. Adjustable Speeds Using Potentiometers In Series

Independent Adjustable Speeds

Replace the speed adjust potentiometer with a single pole, multiposition switch, and two or more potentiometers in parallel, with a total parallel resistance of 10K ohms. Figure 18 shows the connection of two independent speed adjust potentiometers that can be mounted at two separate operating stations.

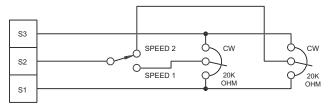


Figure 18. Independent Adjustable Speeds

RUN/JOG Switch - Inhibit Connection (-QDT models)

Using a RUN/JOG switch is recommended in applications where quick stopping is not needed and frequent jogging is required. Use a single pole, two position switch for the RUN/JOG switch, and a normally closed momentary pushbutton for the JOG pushbutton.

Connect the RUN/JOG switch and JOG pushbutton to the inhibit plug as shown in Figure 19. The motor coasts to a stop when the RUN/JOG switch is set to JOG. Press the JOG pushbutton to jog the motor. Return the RUN/JOG switch to RUN for normal operation.

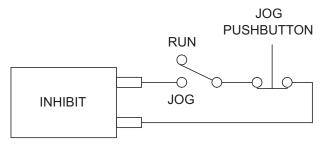


Figure 19. RUN/JOG Switch - Connection to Inhibit

RUN/JOG Switch - Potentiometer Connection

Connect the RUN/JOG switch and the JOG pushbutton as shown in Figure 20. When the RUN/JOG switch is set to JOG, the motor decelerates to minimum speed (minimum speed is determined by the MIN SPD trim pot setting). Press the JOG pushbutton to jog the motor. Return the RUN/JOG switch to RUN for normal operation.

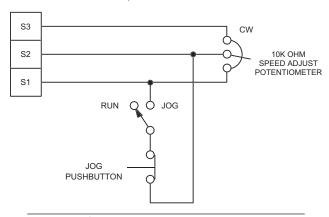


Figure 20. RUN/JOG Switch - Connection to Speed Adjust Potentiometer

Leader-Follower Application

In this application, use a ISO101-1 to monitor the speed of the leader motor (Figure 21). The ISO101-1 isolates the leader motor from the follower drive, and outputs a voltage proportional to the leader motor armature voltage. The follower drive uses this voltage reference to set the speed of the follower motor. An optional ratio potentiometer may be used to scale the ISO101-1 output voltage.

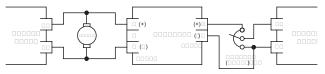


Figure 21. Leader-Follower Application

Single Speed Potentiometer Control Of Multiple Drives

Multiple drives can be controlled with a single speed adjust potentiometer using a ISO101-8 at the input of each drive to provide isolation (Figure 22). Optional ratio potentiometers can be used to scale the ISO101-8 output voltage, allowing independent control of each drive.

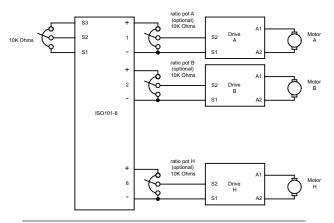


Figure 22. Single Speed Potentiometer Control Of Multiple Drives

Reversing

A dynamic brake may be used when reversing the motor direction (Figure 23). Use a three pole, three position switch rated for at least the maximum DC armature voltage and maximum braking current. Wait for the motor to stop completely before switching it to either the forward or reverse direction. See the Dynamic Braking section on page 26 for recommended dynamic brake resistor sizes.

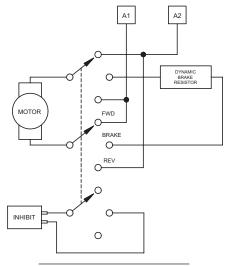


Figure 23. Reversing Circuit Wiring

Reversing with a CLD100-1 Controller

A CLD100-1 controller can be used in a reversing application. The CLD100-1 must be inhibited while braking. If the inhibit feature is not used, the CLD100-1 will continue to regulate. This will cause overshoot when the motor is reconnected to the drive. Figure 24 shows a wiring diagram of the reversing circuit using a PWP series drive and a CLD100-1.

Note: Only one feedback device (Optical Encoder or Magnetic Pickup) may be connected to a CLD100-1 at a time.

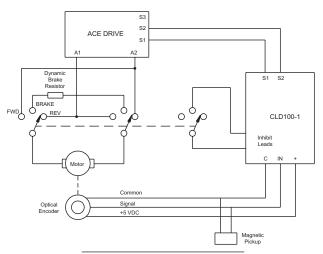


Figure 24. Reversing with a CLD100-1

Section 8. Troubleshooting

Dangerous voltages exist on the drive when it is powered. When possible, disconnect the drive while troubleshooting. High voltages can cause serious or fatal injury.

Before Troubleshooting

Perform the following steps before starting any procedure in this section:

- 1. Disconnect AC line voltage from the drive.
- 2. Check the drive closely for damaged components.
- Check that no conductive or other foreign material has become lodged on the printed circuit board.
- 4. Verify that every connection is correct and in good condition.
- Verify that there are no short circuits or grounded connections.
- 6. Check that the switch settings are correctly set.
- 7. Check that the drive's rated armature is consistent with the motor ratings.

For additional assistance, contact your local AMERICAN CONTROL ELECTRONICS distributor, or the factory direct:

1-815-624-6915 or FAX: 1-815-624-6965

PROBLEM	POSSIBLE CAUSE	SUGGESTED SOLUTIONS
Line fuse blows.	Line fuse is the wrong size.	Check that the line fuse is correct for the motor size.
	Motor cable or armature is shorted to ground.	Check motor cable and armature for shorts.
	 Nuisance tripping caused by a combination of ambient conditions and high-current spikes (i.e. reversing). 	Add a blower to cool the drive components, decrease CURRENT LIMIT settings, resize motor and drive for actual load demand, or check for incorrectly aligned mechanical components or "jams". See page 32 for information on adjusting the CURRENT LIMIT trim pot.
Line fuse does not blow, but the motor does	Speed adjust potentiometer or input voltage signal is set to zero speed.	Increase the speed adjust potentiometer setting or input voltage signal.
not run.	2. INHIBIT mode is active.	Remove the short from the H1 and H2 terminals.
	3. S2 is shorted to S1.	3. Remove the short.
	4. Drive is in current limit.	Verify that the motor is not jammed. Increase CURRENT LIMIT setting if set too low. See page 32.
	Drive is not receiving AC line voltage.	5. Apply AC line voltage.
	6. Motor is not connected.	Remove power. Connect the motor to A1 and A2. Reapply power.

PROBLEM	POSSIBLE CAUSE	SUGGESTED SOLUTIONS
Motor does not stop when the speed adjust potentiometer is full CCW.	1. MIN SPD is set too high.	 Calibrate MIN SPD. See page 30.
Motor runs in the opposite direction	Motor connections to A1 and A2 are reversed.	Remove power. Reverse connections to A1 and A2. Reapply power.
Motor runs too fast.	1. MAX SPD is set too high.	Calibrate MAX SPD. See page 30.
Motor will not reach the desired speed.	MAX SPD setting is too low.	Increase MAX SPD setting. See page 30.
	2. IR COMP setting is too low.	Increase IR COMP setting. See page 33.
	CURRENT LIMIT setting is too low.	3. Increase CURRENT LIMIT setting. See page 32.
	4. Motor is overloaded.	Check motor load. Resize the motor and drive if necessary.
Motor pulsates or surges under load.	1. IR COMP is set too high.	Adjust the IR COMP setting slightly CCW until the motor speed stabilizes. See page 33.
	Motor bouncing in and out of current limit.	Make sure motor is not undersized for load; adjust CURRENT LIMIT trim pot CW. See page 32.

Section 9. Accessories & Replacement Parts

Displays	
Closed Loop	CLD100-1
Open Loop	OLD100-1
Heat sinks	
Chassis	HSK-0001
Kits	
Potentiometer & Connector	
10K Pot, Insulating Washer	KTP-0001
10K Pot, Insulating Washer, 7 Insulated Tabs	KTP-0005
8 Pin Terminal Block (included with -QDT drives)	KTP-0006
9 Insulated Tabs	KTP-0011
Fuse	
2 1.5 Amp 250 V 3AG Fast-blow Glass Fuses	KTF-0001
2 3 Amp 250 V 3AG Fast-blow Glass Fuses	KTF-0002
2 5 Amp 250 V 3AG Fast-blow Glass Fuses	KTF-0003
2 8 Amp 250 V 3AG Fast-blow Glass Fuses	KTF-0004
2 10 Amp 250 V 3AB Normal-blow Ceramic Fuses	KTF-0005
2 15 Amp 250 V 3AB Normal-blow Ceramic Fuses	KTF-0006
Logic Cards	
Current Monitoring	
5 Amps	CMC100-5
20 Amps	CMC100-20
Isolation	
Uni-directional, 8 outputs	ISO101-8
Bi-directional, 1 output	ISO202-1

Unconditional Warranty

A. Warranty

American Control Electronics®, referred to as "the Corporation" warrants that its products will be free from defects in workmanship and material for twelve (12) months or 3000 hours, whichever comes first, from date of manufacture thereof. Within this warranty period, the Corporation will repair or replace, at its sole discretion, such products that are returned to American Control Electronics. 14300 De La Tour Drive. South Beloit. Illinois 61080 USA.

This warranty applies only to standard catalog products, and does not apply to specials. Any returns of special controls will be evaluated on a case-by-case basis. The Corporation is not responsible for removal, installation, or any other incidental expenses incurred in shipping the product to and from the repair point.

B Disclaimer

The provisions of Paragraph A are the Corporation's sole obligation and exclude all other warranties of merchantability for use, expressed or implied. The Corporation further disclaims any responsibility whatsoever to the customer or to any other person for injury to the person or damage or loss of property of value caused by any product that has been subject to misuse, negligence, or accident, or misapplied or modified by unauthorized persons or improperly installed.

C. Limitations of Liability

In the event of any claim for breach of any of the Corporation's obligations, whether expressed or implied, and particularly of any other claim or breach of warranty contained in Paragraph A, or of any other warranties, expressed or implied, or claim of liability that might, despite Paragraph B, be decided against the Corporation by lawful authority, the Corporation shall under no circumstances be liable for any consequential damages, losses, or expenses arising in connection with the use of, or inability to use, the Corporation's product for any purpose whatsoever.

An adjustment made under warranty does not void the warranty, nor does it imply an extension of the original 12-month warranty period. Products serviced and/or parts replaced on a no-charge basis during the warranty period carry the unexpired portion of the original warranty only.

If for any reason any of the foregoing provisions shall be ineffective, the Corporation's liability for damages arising out of its manufacture or sale of equipment, or use thereof, whether such liability is based on warranty, contract, negligence, strict liability in tort, or otherwise, shall not in any event exceed the full purchase price of such equipment.

Any action against the Corporation based upon any liability or obligation arising hereunder or under any law applicable to the sale of equipment or the use thereof, must be commenced within one year after the cause of such action arises.

www.americancontrolelectronics.com
• 14300 DE LA TOUR DRIVE • SOUTH BELOIT, IL 61080 •
• (815) 624-6915 • (815) 624-6965 fax •

Document Number - MAN-0008, Rev 0 - March 2012

© 2011 AMERICAN CONTROL ELECTRONICS®