A Leuze electronic

ODSL 30
Optical distance sensors
© 2014
Leuze electronic GmbH + Co. KG
1 General information 4
1.1 Explanation of symbols 4
1.2 Important terms 4
1.3 Declaration of conformity 5
2 Safety 6
2.1 Proper use 6
2.2 Foreseeable misuse 7
2.3 Competent persons 7
2.4 Disclaimer 8
2.5 Laser safety notices 8
3 Description ODSL 30 12
3.1 General description 12
3.2 Typical Areas of Application for the ODSL 30 13
3.2.1 Continuous distance measurement 13
3.2.2 Positioning tasks 13
3.2.3 Collision protection 14
3.3 Mounting 15
3.4 ODSL 30 Variants 16
3.4.1 ODSL 30/V... with Analogue Output. 17
3.4.2 ODSL 30/24... with three switching outputs 20
3.4.3 ODSL 30/D... with Serial Output 21
3.5 Operation with fieldbus and Ethernet 29
3.6 Operation ODSL 30 30
3.6.1 LED indicators ODSL 30 30
3.6.2 Switching on 31
3.6.3 Adjustment of the display contrast 31
3.6.4 Reset to factory settings 31
3.6.5 Querying the device software version 32
3.6.6 Referencing the device 32
3.7 Configuration ODSL 30 33
3.7.1 Configuration / menu structure ODSL 30/V... (analogue) 34
3.7.2 Configuration / menu structure ODSL 30/24... (3 switching outputs) 36
3.7.3 Configuration / menu structure ODSL 30/D 232... (digital RS 232) 39
3.7.4 Configuration / menu structure ODSL 30/D 485... (digital RS 485) 42
3.7.5 Operating example 45
3.8 Advanced Menu (for software versions V01.10 and newer) 48
3.8.1 Setting an Offset/Preset Value - Compensating for Mounting Tolerances 48
3.8.2 Reduction in Measurement Time to as Little as 30 ms 50
3.8.3 Changing the Display Resolution 51
4 Technical Data ODSL 30 52
4.1 General specifications 52
4.2 Device-specific data 53
4.2.1 ODSL 30/V-30M-S12 53
4.2.2 ODSL 30/24-30M-S12 54
4.2.3 ODSL 30/D 232-30M-S12 55
4.2.4 ODSL 30/D 485-30M-S12 56
4.3 Dimensioned and connection drawings 57
5 Type overview and accessories 60
5.1 Type overview 60
5.2 Accessories. 61
6 Installation 62
6.1 Storage, transportation 62
6.2 Mounting 62
6.3 Teach-in 63
7 Software 65
7.1 Connecting to a PC 65
7.1.1 Connection of the ODSL 30 to a PC 65
7.2 Installation of the ODS 96 configuration software 66
7.3 Starting the program 66
7.3.1 Description of the Menu Commands 68
7.3.2 Trade shows 69
Figure 2.1: Laser aperture, laser warning sign 10
Figure 2.2: Laser warning and information signs - supplied stick-on labels 11
Figure 3.1: Application example Positioning of Elevating Platforms 13
Figure 3.2: Application example "Collision Prevention" 14
Figure 3.3: ODSL 30 with BT 30 15
Figure 3.4: Dimensioned drawing BT 30 15
Figure 3.5: Characteristic output curve ODSL 30/V... with positive gradient 17
Figure 3.6: Characteristic output curve ODSL 30/V... with negative gradient 17
Figure 3.7: Behaviour of the switching outputs ODSL 30/24... (PNP output active high) 20
Figure 3.8: Serial transmission formats ODSL 30/D 22
Figure 3.9: Voltage divider for the RS 485 bus termination 28
Figure 3.10: Indicator and operating elements ODSL 30 30
Figure 3.11: ODSL 30 measurement values with a uniqueness range of 9.8 m 51
Figure 4.1: Dimensioned drawing ODSL 30 variants 57
Figure 4.2: Electrical Connection ODSL 30/V. 58
Figure 4.3: Electrical Connection ODSL 30/24 58
Figure 4.4: Electrical Connection ODSL 30/D 232 58
Figure 4.5: Electrical Connection ODSL 30/D 485 59
Table 5.1: ODSL 30 type overview 60
Table 5.2: Accessories ODSL 30 61
Figure 6.1: View through a chase 62
Figure 7.1: Connection of the ODSL 30 to a PC via the programming terminal UPG 5 65
Figure 7.2: Installation directory 66
Figure 7.3: Device selection 67
Figure 7.4: Start menu before measurement 67
Figure 7.5: Display of the current measurement values of the ODSL 30 connected. 69

1 General information

1.1 Explanation of symbols

The symbols used in this technical description are explained below.

Attention

This symbol precedes text messages which must strictly be observed. Failure to comply with this information results in injuries to personnel or damage to the equipment.

Attention Laser Radiation

This symbol warns of possible danger caused by hazardous laser radiation.

Notice

This symbol indicates text passages containing important information.

1.2 Important terms

Phase measurement

Distance measuring procedure, which determines the distance of an object by the shift of the phase angle of the light reflected from the object.

Uniqueness range

Due to the periodicity of the sinusoid, the phasing of the signals received by the ODSL 30 limits the determination of unique measurement values to within a specific interval. The length of this interval is called the uniqueness range. A large uniqueness range is equivalent to high background suppression (see chapter 3.8.2).

Absolute measurement accuracy

Shows the possible divergence of the measurement value from the anticipated value through changes in the environmental conditions during the measuring process. Higher accuracy is given at constant environmental conditions.

Repeatability

Measuring distance change with repeated measurement at the same output signal (observe the same peripheral conditions as with resolution).

Resolution

The smallest possible distance change of the measurement object, which causes a definite change in the output signal.

Referencing

Device function of the ODSL 30... for the compensation of a possible temperature drift. A reference measurement should be carried out before each exact measurement. The reference measurement is activated via a separate device input and is automatically carried out once after the device is switched on.

Diffuse reflection

Return and/or degree of reflection of the radiated light.

Measurement time

The measurement time is dependent on the selected uniqueness range and the luminosity coefficient of the object (see chapter 3.8.2).

Delay before start-up

The delay before start-up indicates the point in time when the first valid measurement can be obtained after switching on.

Light switching/Dark switching

Specifies the behaviour of the switching output: light switching if an object is located within the configured distance range, dark switching if an object is located outside of the configured distance range.

Insensitivity towards ambient light

Indicates the insensitivity of the measurement result towards ambient light. The ODSL 30 is reliably measuring even with extraneous light intensity of 5 kLux . Typical light intensity in a work place is only 1 kLux .

1.3 Declaration of conformity

The optical distance sensors of the ODSL 30 series have been manufactured observing current European standards and guidelines.

Notice

A corresponding Declaration of Conformity can be requested from the manufacturer.
The manufacturer of the product, Leuze electronic GmbH + Co. KG in D-73277 Owen, possesses a certified quality assurance system in accordance with ISO 9001.

2 Safety

This sensor was developed, manufactured and tested in line with the applicable safety standards. It corresponds to the state of the art.

2.1 Proper use

Optical distance sensors of the ODSL 30 series are intelligent, configurable sensors for the optical, contactless measurement of the distance to objects.

Areas of application

The optical distance sensors of the ODSL 30 series have been designed for the following areas of application:

- distance measurement
- contour determination
- positioning of side-tracking skates, cranes, lifting devices
- filling level measurement

CAUTION

Observe intended use!

${ }^{4}$ Only operate the device in accordance with its intended use.
The protection of personnel and the device cannot be guaranteed if the device is operated in a manner not complying with its intended use.
Leuze electronic $\mathrm{GmbH}+\mathrm{Co}$. KG is not liable for damages caused by improper use.
${ }^{4}$) Read the technical description before commissioning the device.
Knowledge of this technical description is an element of proper use.

```
NOTE
Comply with conditions and regulations!
& Observe the locally applicable legal regulations and the rules of the employer's liability
    insurance association.
```


Attention

For UL applications, use is only permitted in class 2 circuits in accordance with the NEC (National Electric Code).

2.2 Foreseeable misuse

Any use other than that defined under the "Approved purpose" or which goes beyond that use is considered improper use.
In particular, use of the device is not permitted in the following cases:

- rooms with explosive atmospheres
- in circuits which are relevant to safety
- operation for medical purposes

NOTE

Do not modify or otherwise interfere with the device.

4 Do not carry out modifications or otherwise interfere with the device.
The device must not be tampered with and must not be changed in any way.
The device must not be opened. There are no user-serviceable parts inside.
Repairs must only be performed by Leuze electronic GmbH + Co. KG.

2.3 Competent persons

Connection, mounting, commissioning and adjustment of the device must only be carried out by competent persons.
Prerequisites for competent persons:

- They have a suitable technical education.
- They are familiar with the rules and regulations for occupational safety and safety at work.
- They are familiar with the technical description of the device.
- They have been instructed by the responsible person on the mounting and operation of the device.

Certified electricians

Electrical work must be carried out by a certified electrician.
Due to their technical training, knowledge and experience as well as their familiarity with relevant standards and regulations, certified electricians are able to perform work on electrical systems and independently detect possible hazards.
In Germany, certified electricians must fulfill the requirements of accident-prevention regulations BGV A3 (e.g. electrician foreman). In other countries, there are respective regulations that must be observed.

2.4 Disclaimer

Leuze electronic $\mathrm{GmbH}+\mathrm{Co}$. KG is not liable in the following cases:

- The device is not being used properly.
- Reasonably foreseeable misuse is not taken into account.
- Mounting and electrical connection are not properly performed.
- Changes (e.g., constructional) are made to the device.

2.5 Laser safety notices

ATTENTION, LASER RADIATION - LASER CLASS 2

Never look directly into the beam!

The device fulfills the EN 60825-1:2008-05 (IEC 60825-1:2007) safety regulations for a product in laser class 2 as well as the U.S. 21 CFR 1040.10 regulations with deviations corresponding to "Laser Notice No. 50" from June 24th, 2007.
${ }^{4}$ Never look directly into the laser beam or in the direction of reflecting laser beams! If you look into the beam path over a longer time period, there is a risk of injury to the retina.
\leftrightarrow Do not point the laser beam of the device at persons!
\Leftrightarrow Intercept the laser beam with an opaque, non-reflective object if the laser beam is accidentally directed towards a person.
${ }^{4}$ When mounting and aligning the device, avoid reflections of the laser beam off reflective surfaces!
\Leftrightarrow CAUTION! The use of operating or adjusting devices other than those specified here or carrying out of differing procedures may lead to dangerous exposure to radiation. The use of optical instruments or devices (e.g., magnifying glasses, binoculars) with the product will increase eye hazard.
${ }^{4}$ Adhere to the applicable legal and local regulations regarding protection from laser beams acc. to EN 60825 (IEC 60825) in its latest version.
${ }^{4}$) The device must not be tampered with and must not be changed in any way.
There are no user-serviceable parts inside the device.
Repairs must only be performed by Leuze electronic GmbH + Co. KG.

NOTE

Affix laser information and warning signs!
Laser information and warning signs are attached to the device (see figure 2.1). Also included with the device are self-adhesive laser warning and laser information signs (stickon labels) in multiple languages (see figure 2.2).
${ }_{4}$ Affix the laser information sheet with the language appropriate for the place of use to the device.
When using the device in the US, use the stick-on label with the "Complies with 21 CFR 1040.10" notice.
$\left.{ }_{4}\right)_{\text {Affix the laser information and warning signs near the device if no signs are attached }}$ to the device (e.g. because the device is too small) or if the attached laser information and warning signs are concealed due to the installation position.
Affix the laser information and warning signs so that they are legible without exposing the reader to the laser radiation of the device or other optical radiation.

Figure 2.1: Laser aperture, laser warning sign

Figure 2.2: Laser warning and information signs - supplied stick-on labels

3 Description ODSL 30

3.1 General description

The ODSL 30 is a lase distance sensor with an extensive area of application. The equipment is available in different versions with analogue outputs, digital outputs, or switching outputs. The distance measurement uses the phase measurement principle. The measurement ${ }^{1}$) range lies between $0.2 \ldots 30 \mathrm{~m}$.
Integrated in the device are a keypad and a two-line LC display which can be used to configure the ODSL 30. During measurement operation, the display shows the current measurement value. The switching point of the switching outputs can easily be set via a teach input on all variants.

Remarks

Moving objects into the measurement beam from the side may lead to incorrect measurement values.

By carrying out the integrated reference measurement function before a measurement, the sensor's accuracy can be improved. To achieve this, the active input (Pin 2) can be configured via the menu to act either as an activation input with referencing, or as a pure referencing input. While the referencing function is carried out (duration about 0.3s), no measurement can be taken.

If the device is used in areas subject to electrostatic charges, it is recommended to connect the housing of the ODSL 30 to a common potential.

Accessories

The ODSL 30 ships with the mounting device BT 30 for easy mounting and alignment (further accessories see chapter 5.2).

[^0]
3.2 Typical Areas of Application for the ODSL 30

3.2.1 Continuous distance measurement

All ODSL 30 variants with analogue/digital or switching output can be used for continuous distance measuring. The menu-guided configuration via keypad and LC display on the device without additional software permits the adaptation to a large number of applications. Depending on position or settings of the ODSL 30, various applications are possible:

- Positioning of side-tracking skates, cranes, lifting devices
- Contour determination through controlled passing movement of an object through the beam of the ODSL 30.
- Volume measuring by taking measurements on two levels during the concurrent movement of the object.
- Determination of the diameter, e.g., on paper rolls.
- Measuring the thickness of planks with two opposing sensors and a differential of the two measured values.

3.2.2 Positioning tasks

The ODSL 30 variants with analogue output and/or up to three teachable switching outputs are ideally suited for basic positioning tasks, such as the height/level adjustment of elevating platforms and rising floors.
The ODSL 30 is mounted in a way to enable positioning in the direction of the measuring beam.

Figure 3.1: Application example Positioning of Elevating Platforms

3.2.3 Collision protection

The ODSL 30 is ideally suited to be used as collision prevention device:

- Distance regulation via the analogue output of the ODSL 30
- Collision prevention via the switching outputs of the ODSL 30

Figure 3.2: Application example "Collision Prevention"

3.3 Mounting

The ODSL 30 ships with the mounting device BT 30 that permits the easy mounting and alignment of the ODSL 30.

Figure 3.3: ODSL 30 with BT 30
Dimensioned drawing BT 30

Figure 3.4: Dimensioned drawing BT 30

Notice

With the help of the two aiming notches on the upper side of the device, you can carry out a coarse alignment of the ODSL 30 even before commissioning.

3.4 ODSL 30 Variants

Model variations

The ODSL 30 is available in four variants:

- as a laser distance sensor with 2 analogue outputs 1 ... 10V and $4 \ldots 20 \mathrm{~mA}$ and 1 universally configurable switching output measurement range between $0.2 \ldots 30 \mathrm{~m}$
- as a laser distance sensor with 3 universally configurable switching outputs measurement range between 0.2 30 m
- as a laser distance sensor with serial interface RS 232 and 2 universally configurable switching outputs, measurement range between $0.2 \ldots 30 \mathrm{~m}$
- as a laser distance sensor with serial interface RS 485/RS 422 and 2 universally configurable switching outputs, measurement range between $0.2 \ldots 30 \mathrm{~m}$

3.4.1 ODSL 30/V... with Analogue Output

Analogue Output ODSL 30/V...

Figure 3.5: Characteristic output curve ODSL 30/V... with positive gradient

Figure 3.6: Characteristic output curve ODSL 30/V... with negative gradient

Behaviour of the analogue outputs of the ODSL 30/V...
The ODSL 30/V... has an analogue output with linear behaviour. A current output ($4 \ldots 20 \mathrm{~mA}$) and a voltage output ($1 \ldots 10 \mathrm{~V}$) are available to the user. In order to achieve the highest resolution possible, the range of the analog output should be set as small as the application allows. The analogue output can be adjusted within the measurement range by configuration via the keypad and LC display (adaptation of the characteristic output curve). The parameter Col. Ano. Out.fut determines whether the calibration is to be carried out for the current or voltage output. The characteristic output curve can be configured with a positive or negative gradient. For this purpose, the two distance values Fos for min. val and Fos for mox. val for the minimum and maximum analogue output value are set accordingly in the range between 200 mm and $30,000 \mathrm{~mm}$ (see figure 3.5 and figure 3.6).

Object distance	Current output ${ }^{1)}$		Voltage output ${ }^{2}$)	
	with positive gradient	with negative gradient	with positive gradient	with negative gradient
no object or object too close or too far away (no signal)	$\begin{gathered} >20.5 \mathrm{~mA} \\ \text { (typ. } 21 \mathrm{~mA} \text {) } \end{gathered}$	$\begin{gathered} <3.5 \mathrm{~mA} \\ \text { (typ. } 3 \mathrm{~mA} \text {) } \end{gathered}$	$\begin{gathered} >10.25 \mathrm{~V} \\ \text { (typ. } 10.5 \mathrm{~V} \text {) } \end{gathered}$	$\begin{gathered} <0.75 \mathrm{~V} \\ \text { (typ. } 0.5 \mathrm{~V} \text {) } \end{gathered}$
= distance for minimum analogue value	4 mA	20 mA	1 V	10 V
= distance for maximum analogue value	20 mA	4 mA	10 V	1 V
< distance for minimum analogue value	4 mA	20 mA	1 V	10 V
> distance for maximum analogue value	20 mA	4 mA	10 V	1 V

1) The typical values only apply if the current output is calibrated.
2) The typical values only apply if the voltage output is calibrated.

Teach-in of the characteristic output curve

In addition to the edge-controlled teach-in (slope control) of the switching outputs, teachin of the characteristic output curve is also possible via a teach line for devices with software version V01.10 and newer (see chapter 3.6.5). The following steps are required for the line teach-in of the analogue characteristic curve:

1. Activation of the analogue line teach function via the keypad and menu.

Activate Infut. Menu -> Teach Mode -> Teach Mode time control.
2. Position measurement object at the desired measurement distance.
3. The respective teach function is activated by applying the active level (default $+\mathrm{U}_{\mathrm{B}}$) to the teach input "Teach Q1" (pin 5). The teach event is indicated by the flashing of the LEDs and on the display.

Teach function	Duration of teach signal	Green LED	Yellow LED
Upper switching point switching output Q1	$2 \ldots 4 \mathrm{~s}$	flash synchronously	
Distance value for analogue output $1 \mathrm{~V} / 4 \mathrm{~mA}$	$4 \ldots 6 \mathrm{~s}$	continuous light	flashing
Distance value for analogue output $10 \mathrm{~V} / 20 \mathrm{~mA}$	$6 \ldots 8 \mathrm{~s}$	flashing	continuous light

4. To finish the teach event, disconnect the teach input from the teach signal after the desired time.
5. A successful teach event is signaled by the end of the flashing of the LEDs. The menu entries can be used to check that the teach values are properly accepted and to make any changes.

Error messages

Rapid flashing of the green LED following a teach event indicates an unsuccessful teach event. The sensor remains ready for operation and continues to function with the old values.
Remedy:

- Repeat teach event or
- Activate teach input for more than 8 s or
- Disconnect sensor from voltage to restore the old values.

Behaviour of the switching output of the ODSL 30/V...
Additionally, a switching output with two switching points (switching window) is available with the ODSL 30/V... with analogue output. The upper switching point can be taught using a teach line. By configuring within the measurement range, it is possible to set the lower and upper switching points, the switching hysteresis, the switching behavior (light/dark switching), and the type of switching output (PNP high active or NPN low active or PNP/NPN push-pull).
Teaching always takes place towards the upper switching point (see figure 3.7 on page 20). The lower switching point is set to the value '199' by default and can be adjusted via the operating menu. The following table applies for a lower switching point of 199 mm .

Object distance	Light switching output Q1	Dark switching output Q1
No object (no signal)	off	on
$<200 \mathrm{~mm}^{1)}$	on	off
< teach value	on	off
> teach value	off	on

1) Only if a received signal is available that can still be evaluated, otherwise same as "no object"

3.4.2 ODSL 30/24... with three switching outputs

Switching outputs ODSL 30/24...

Figure 3.7: Behaviour of the switching outputs ODSL 30/24... (PNP output active high)

Behaviour of the switching outputs of the ODSL 30/24...

The ODSL 30/24... is equipped with three independent switching outputs, each with 2 switching points (switching windows). The upper switching points can be taught using a teach line. By configuring within the measurement range, it is possible to set the lower and upper switching points, the switching hysteresis, the switching behavior (light/dark switching), and the type of switching output (PNP high active or NPN low active or PNP/NPN push-pull).
Teaching always takes place towards the upper switching point (see figure 3.7). Each of the lower switching points is set to the value '199' by default and can be adjusted via the operating menu. The following table applies for a lower switching point of 199 mm .

Object distance	Light switching			Dark switching		
	output Q1	output Q2	output Q3	output Q1	output Q2	output Q3
No object (no signal)	off	off	off	On	On	On
$<200 \mathrm{~mm}^{1)}$	On	On	On	off	off	off
< teach value	On	On	On	off	off	off
> teach value	off	off	off	On	On	On

1) Only if a received signal is available that can still be evaluated, otherwise same as "no object"

3.4.3 ODSL 30/D... with Serial Output

Transmission formats

The ODSL 30/D... has 2 digital switching outputs and one serial interface which is implemented either as an RS 232 interface or as an RS 485/RS 422 interface. The transmission rate can be set to between 600 and 115200 baud.
The serial transmission is carried out with 1 start bit, 8 data bits and 1 or 2 stop bits without parity.
For the transmission of the measurement values, 6 different transmission modes may be configured (see figure 3.8):

- ASCII measurement value
- ASCII measurement value 0.1 mm
- 14 bit measurement value
- 16 bit measurement value
- 20 bit measurement value
(6 bytes, measurement range $0 \ldots 65 \mathrm{~m}$, resolution 1 mm$)^{1)}$
(7 bytes, measurement range $0 \ldots 65 \mathrm{~m}$, resolution 0.1 mm$)^{1)}$
(2 bytes, measurement range $0 \ldots 16 \mathrm{~m}$, resolution 1 mm$)^{1)}$
(3 bytes, measurement range $0 \ldots 65 \mathrm{~m}$, resolution 1 mm$)^{1)}$
(4 bytes, measurement range $0 \ldots 65 \mathrm{~m}$, resolution 0.1 mm$)^{1)}$
- Remote Control Operation (Remote Control) ${ }^{2)}$
The output format is activated by configuration with the keypad and menu.

Notice!

Selecting an output resolution of 0.1 mm does not change the internal measurement system of the ODSL 30 and does not increase its accuracy. For this reason, measurement values with a resolution of 0.1 mm may vary in successive measurements depending on the application.

1) Continuous measured value output in a 100 ms grid. For the ODSL $30 / \mathrm{D} 485 \ldots$, the transfer is carried out in RS 422 mode, i.e., with permanent transmission on the Tx+ and Tx- lines.
2) For the ODSL 30/D 485..., the transfer is carried out in RS 485 mode, i.e., the $T x+$ and $T x$ lines are switched to receive. This permits several ODSL $30 / \mathrm{D} 485 \ldots$ to be connected onto a single bus. In this case, the device addresses of the individual devices must differ from each other.
The ODSL 30/D $232 \ldots$ can also be operated via remote control, however, only as a point-to-point-connection between the ODSL 30 and the controller.

Figure 3.8: Serial transmission formats ODSL 30/D...

Measurement value output for various transmission types

Object distance	Measurement value output for transmission type							
	ASCII 5 bytes	ASCII 6 bytes	14 bit	16 bit	20 bit	Remote 4 bytes	Remote 5 bytes	Remote 6 bytes
No object (no signal)	65535	655350	16383	65535	655350	9999	65535	655350
<200 mm ${ }^{1}$)	Distance value in mm	$\begin{gathered} \hline \text { Distance } \\ \text { value } \\ \text { in } 1 / 10 \mathrm{~mm} \end{gathered}$	Distance value in mm	Distance value in mm	$\begin{gathered} \hline \text { Distance } \\ \text { value } \\ \text { in } 1 / 10 \mathrm{~mm} \end{gathered}$	Distance value in mm	Distance value in mm	$\begin{gathered} \hline \text { Distance } \\ \text { value } \\ \text { in } 1 / 10 \mathrm{~mm} \end{gathered}$
200 mm ... 9900 mm	Distance value in mm	$\begin{gathered} \hline \text { Distance } \\ \text { value } \\ \text { in } 1 / 10 \mathrm{~mm} \end{gathered}$	Distance value in mm	Distance value in mm	$\begin{gathered} \text { Distance } \\ \text { value } \\ \text { in } 1 / 10 \mathrm{~mm} \end{gathered}$	Distance value in mm	Distance value in mm	$\begin{gathered} \text { Distance } \\ \text { value } \\ \text { in } 1 / 10 \mathrm{~mm} \end{gathered}$
9901 mm ... 16000mm	Distance value in mm	$\begin{gathered} \text { Distance } \\ \text { value } \\ \text { in } 1 / 10 \mathrm{~mm} \end{gathered}$	Distance value in mm	Distance value in mm	Distance value in $1 / 10 \mathrm{~mm}$	9901	Distance value in mm	Distance value in $1 / 10 \mathrm{~mm}$
$16001 \mathrm{~mm} . . .65000 \mathrm{~mm}$	Distance value in mm	$\begin{gathered} \hline \text { Distance } \\ \text { value } \\ \text { in } 1 / 10 \mathrm{~mm} \end{gathered}$	16001	Distance value in mm	Distance value in $1 / 10 \mathrm{~mm}$	9901	Distance value in mm	Distance value in $1 / 10 \mathrm{~mm}$
> 65000 mm	65001	650010	16001	65001	650010	9901	65001	650010
$\begin{gathered} \text { Object distance + Offset } \\ >65000 \mathrm{~mm} \\ \text { (Offset Direction neg.) } \end{gathered}$	65001	650010	16001	65001	650010	9901	65001	650010
Object distance - Offset $<0 \mathrm{~mm}$ (Offset Direction pos.)	0	0	0	0	0	0	0	0
Device error	0	0	0	0	0	0	0	0

1) Only if a received signal is available that can still be evaluated, otherwise same as "no object"

Commands for remote control operation

For remote control operation (parameter Remote Control), a device address between 0 ... 14 can be set. In this operating mode, the ODSL 30/D... reacts only to commands from the controller.
With asynchronous measurement, the sensor measures continuously. After processing the command, the next measurement value of the ODSL 30 is transmitted. The response time of the ODSL 30 varies within the scope of the measurement time and is dependent on the time of the query and the state of the internal measurement cycle of the ODSL 30 at this time.
With synchronous measurement, the measurement starts with processing of the current command. The response time of the ODSL 30 is constant and is dependent only on the configured measurement time.
The following control commands are available:

Commands for the asynchronous measurement

Measurement value query, 4 digits:

Asynchronous measurement value query 5 digits, resolution 1 mm :

					Byte n					Response
	0	1	2	3	4	5	6	7	8	
Command	$\begin{gathered} " * " \\ (0 \times 2 A) \end{gathered}$	ASCII address " 0", ${ }^{9}$	$\begin{gathered} \text { "M" } \\ (0 \times 4 \mathrm{D}) \end{gathered}$	$\begin{gathered} \text { "\#" } \\ (0 \times 23) \end{gathered}$	-	-	-	-	-	
Sensor response	$\begin{gathered} " * " \\ (0 \times 2 A) \end{gathered}$	ASCII address " $\mathrm{C} \mathrm{M}$ ",	10'000's	$\begin{aligned} & \text { ASCII dis } \\ & 1^{\prime} 000 \text { 's } \end{aligned}$	100's	tens	ones	State	$\begin{gathered} \text { "\#" } \\ \text { (0x23) } \end{gathered}$	$\begin{gathered} \text { max. } \\ 120 \mathrm{~ms} \end{gathered}$

Asynchronous measurement value query 6 digits, resolution 0.1 mm :

Commands for the synchronous measurement

The two following synchronous measurement commands "S" (5-digit measurement value, resolution 1 mm) or "s" (6-digit measurement value, resolution 0.1 mm) enable the start of a measurement at a precise time.
If a synchronous measurement value is requested via remote control operation:

- this command immediately switches on the laser and triggers the measurement.
- following the measurement cycle, the laser is switched off.
- the measured value is transmitted following this measurement cycle.

Notice!

Prerequisite for the function of the synchronous measurement value query is that the sensor be deactivated (laser off)!

For this purpose:

- the active/reference input (pin 2) must be connected to the inactive state (default: 0V) or it must be open.
- the active/reference input (pin 2) must be configured as an activation and referencing input:
Infut Menu \rightarrow Infut activiref -> input activiref Activation + Ref
Synchronous measurement value query 5 digits, resolution 1 mm :

											Response
	0	1	2	3	4	5	6	7	8	9	
Command	$\begin{gathered} " \star " \\ (0 \times 2 \mathrm{~A}) \end{gathered}$	ASCII address "0...9",	$\begin{gathered} \text { "S" } \\ (0 \times 53) \end{gathered}$	$\begin{gathered} \text { "\#" } \\ (0 \times 23) \end{gathered}$	-	-	-	-	-	-	
Sensor response	$\begin{gathered} " \star " \\ (0 \times 2 A) \end{gathered}$	ASCII address "0...9",	10'000's	1'000's	100's	tens	ones	State	$\begin{gathered} \text { "\#" } \\ \text { (0x23) } \end{gathered}$	-	$\begin{gathered} 30 \\ \ldots \\ 100 \mathrm{~ms} \end{gathered}$

Synchronous measurement value query 6 digits, resolution 0.1 mm :

1) Depending on the configuration of the measurement time, see chapter 3.8 "Advanced Menu (for software versions V01.10 and newer)", duration of data transmission not included.

Notice!

To make the laser beam visible for adjustment purposes and to view measurement values on the display, the

- active/reference input (pin 2) can be connected to the active state (default: 24 V) or
- the sensor can be activated with the command "A" (see page 26) or
- the active/reference input (pin 2) can be temporarily configured via the menu as a reference input:
Infut Mend -> Infut actiolref -> Infut activiref Referencing

Possible errors and their causes

Instead of a synchronous measurement, an asynchronous measurement is performed. Possible causes of the error: the synchronous measurement command was set by the activated, i.e. the measuring, sensor. Instead of the synchronous measurement, an asynchronous measurement was performed (corresponds to the commands "M" and "m").

Further commands

Activate referencing:

Activate sensor ${ }^{1)}$:

| | Byte no. | | | | | | | | | Response |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| time | | | | | | | | | | |$|$

Deactivate sensor ${ }^{1}$:

| | Byte no. | | | | | | | | Response |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| time | | | | | | | | | |

Status byte (bitwise processing):

Bit number	Value	Meaning
$7(\mathrm{MSB})$	0×80	always $=0$ (reserved)
6	0×40	$1=$ other error, $0=$ OK
5	0×20	always $=1$, if the status is 0×20, the sensor functions flawlessly
4	0×10	always $=0$ (reserved)
3	0×08	always $=0$ (reserved)
2	0×04	$1=$ sensor deactivated, $0=$ sensor activated
1	0×02	$1=$ no signal or signal too low, $0=$ signal OK
$0($ LSB $)$	0×01	$1=$ laser defective, $0=$ Laser OK

1) The sensor is activated by default and in this case cannot be deactivated via the control command. The control command is only effective if the input activ/ref is configured as an activation and referencing input. In this case, the following applies: The sensor is activated if the input activ/ref is at active level or if the sensor is activated via control command. The sensor is deactivated if the input activ/ref is not at active level and the sensor is deactivated via control command.

Behaviour of the switching outputs of the ODSL 30/D...

In addition, the ODSL 30/D... with serial output also has two switching outputs. The position within the measuring range at which the switching outputs become active can be set arbitrarily via a teach line or via configuration. In addition to the switching points, it is also possible to configure the switching hysteresis, the switching behaviour (light/dark switching), and the type of switching output (PNP high active or NPN low active or PNP/NPN push-pull).

Teaching always takes place towards the upper switching point (see figure 3.7 on page 20). The lower switching point is set to the value '199' by default and can be adjusted via the operating menu. The following table applies for a lower switching point of 199 mm .

Object distance	Light switching		Dark switching	
	output Q1	output Q2	output Q1	output Q2
No object (no signal)	off	off	on	on
$<200 \mathrm{~mm}^{1)}$	on	on	off	off
< teach value	on	on	off	off
> teach value	off	off	on	on

1) Only if a received signal is available that can still be evaluated, otherwise same as "no object"

Notes regarding the termination of the data lines of the ODSL 30/D 485...

The ODSL 30/D 485... features a combined transmitter and receiver component that can transmit serial data according to the RS 485 and RS 422 standard (see TIA/EIA-485-A or DIN66259, Part 3).

These standards define some basic rules that should be followed in order to achieve the most reliable data transmission:

- The data lines A and B (which correspond to the ODSL 30 pins $T x+$ and $T x-$) are connected to an intrinsic impedance of $Z_{0} \approx 120 \Omega$ via a 2-wire twisted pair cable.
- The end of the data line (and the beginning in case of RS 485) is terminated using a 120Ω resistor. The ODSL 30/D 485... does not have an internal bus termination.
- The RS 485 bus participants are wired in an in-line bus topology, i.e., the data line is fed from one bus participant to the next. Cable stubs are to be avoided or to be kept as short as possible.
- The RS 485 specification assumes an inactive potential difference of $U_{A B} \geq 200 \mathrm{mV}$ between the data lines. A bus termination in the form of a voltage divider should be implemented in order to maintain this level. Usually, it is connected to the RS 485 coupling module of the PLC.

The RS 485 specification permits transmission rates in the megabit range for up to 32 participants. The ODSL 30/D 485... is designed for a data transmission rate of typically 9600 Baud (600 ... 115200 Baud may be configured). In practice, this means that the strict requirements regarding the bus termination and the cabling are "softened" for a few bus participants.

However, it is important to maintain the bus idle levels ($\mathrm{U}_{\mathrm{AB}} \geq 200 \mathrm{mV}$). If the PLC coupling module does not include a bus termination with voltage divider, the following circuit may be used.

Figure 3.9: Voltage divider for the RS 485 bus termination
The RS 422 connection does not require a bus termination for cable lengths up to about 20 m and data transmission rates less than 9600 Baud.

Further information:

- RS 422: Electrical Specification acc. to DIN 66259, Part 3
- ISO 8482: Abstract

Specifies the physical medium characteristics for twisted pair multipoint interconnections in either 2-wire or 4-wire network topology, a binary and bi-directional signal transfer, the electrical and mechanical design of the endpoint system branch cables and the common trunk cable which may be up to 1200 m in length, the component measurements of the integrated type generators and receivers within the endpoint system, the applicable data signaling rate up to $12.5 \mathrm{Mbit} / \mathrm{s}$.

3.5 Operation with fieldbus and Ethernet

Sensors ODSL 30/D232-30M-S12 with an RS 232 serial interface can be connected with MA 2xxi modular interfacing units to the following fieldbus and Ethernet types:

- PROFIBUS DP \rightarrow MA 204i
- Ethernet TCP/IP \rightarrow MA 208i
- CANopen \rightarrow MA 235i
- EtherCAT \rightarrow MA 238i
- PROFINET-IO \rightarrow MA 248i
- DeviceNet \rightarrow MA 255i
- EtherNet/IP \rightarrow MA 258i

To do this, the modular interfacing unit is connected to the sensor via a connection cable. To operate the distance sensors, rotary switch $\mathbf{S} 4$ of the modular interfacing unit must be set to switch position B.
Further details can be found in the technical descriptions of the modular interfacing units.

Notice

The default settings of the ODSL 30/D232... serial interface have to be adjusted. For additional information on configuring the interface, refer to chapter 3.7.3.

Specifications for the serial interface		
COM function:	ASCII	(see page 41)
Baud rate:	38400 baud	(see page 41)

3.6 Operation ODSL 30

Indicator and operating elements

Figure 3.10:Indicator and operating elements ODSL 30

3.6.1 LED indicators ODSL 30

LED	Color	Display when	activated teach-in characteristic output curve ${ }^{1)}$
PON	green, continuous light	Sensor operation	ready
	green, flashing	-	teach event
	green off	no voltage	
Q1, Q2, Q3	yellow, continuous light	object inside teach-in measurement distance	teach event
	yellow flashing	-	teach event
	yellow off	object outside teach-in measure- ment distance or no signal present	

1) The teach-in process is described in detail in section 3.4 . 1 and section 6.3

Notice

The 3 yellow LEDs Q1, Q2 and Q3 for the status display of the up to 3 switching outputs are additionally located in the optical window of the ODSL 30. Only the LEDs for those switching outputs that are actually available in the respective device version have a function.

3.6.2 Switching on

After power-on and error-free initialization of the device, the green LED PON lights up continuously, the ODSL 30 is measurement mode. The display lighting remains switched off.

```
Leuze electronic
Dist. [mmem 10687
```

In measurement mode, the LC display shows the current measurement value in millimetres. If no object is detected or if the signal is too weak, the notice HO SIGHAL. appears on the display.

Notice

After an operating time of 30 min ., the device has reached the operating temperature required for an optimal measurement and should be referenced then.

3.6.3 Adjustment of the display contrast

While switching the device on, press both arrow keys of the ODSL 30 simultaneously.

```
contrast: 160
```

After releasing the keys, you can decrease or increase the contrast of the LC display with the arrow keys (value range $0 \ldots 255$). By pressing ENTER, the adjusted contrast value is applied and you get to the configuration menu of the ODSL 30.

3.6.4 Reset to factory settings

By pressing ENTER while switching the device on, you can reset the configuration of the ODSL 30 to the factory settings.
A safety prompt appears.

```
Defoult. Setting?
Press a for DK
```

By pressing ENTER again, all parameters are reset to factory settings. All settings made previously are permanently lost. By pressing an arrow key, the ODSL 30 returns to measurement operation without resetting the parameters.

3.6.5 Querying the device software version

You can query the device software version in the menu for configuring the ODSL 30. To do this, select the following menu item in the Service Menu:

SW V01.20 YYMMDI <- Software version V0x.xx with date (YY = year, MM = month, DD = day)
Val: 31024

3.6.6 Referencing the device

The ODSL 30 is equipped with a referencing function for internally calibrating the sensor. By carrying out the integrated reference measurement function before a measurement, the sensor's accuracy can be improved.
A referencing operation is performed

- when switching on the device (Power-On).
- by means of a signal at the activation/referencing input (PIN 2).
- by means of a command in remote control operation (ODSL 30/D... only).

Notice

In particular, the referencing function should be performed for changing environmental conditions.

While the referencing function is carried out (duration about 350 ms), no measurement can be taken.

3.7 Configuration ODSL 30

Configuration / navigation in the menu

By pressing an arbitrary key, the LC display illumination is switched on, and the configuration menu of the ODSL 30 appears.
${ }^{4}$ You can scroll through the menu items using the arrow keys.
${ }^{4}$) You can select the individual menu items by pressing ENTER.
$\stackrel{4}{4}$ If a value or parameter can be changed, a cursor flashes. You can change this value or parameter by using the arrow keys. You apply the setting by pressing ENTER.
${ }^{4}$ Via the menu item "Return", you return to the parent level in the menu structure.
${ }^{4}$) Via the menu item "Exit from Menu", you return to the measurement mode.

Notice

Values that can be toggled or edited are shown in red (PDF file) or grey (b/w print of the manual) in the menu structure.

If no key is pressed for 60s in the configuration menu, the device automatically returns to the measurement mode.

The device can be protected against unauthorized configuration change by activating the password query. The password is always set to "165".

3.7.1 Configuration / menu structure ODSL 30/V... (analogue)

Level 1 Level		Level 3	Level 4	$\begin{array}{cc}\text { Explanation / Notes } & \text { Default } \\ \text { Measurement time / unique- } & \mathbf{X}\end{array}$	
Applic. Param.	Tmeas Rend Rem. 100 ms 150m $6-90 \%$	Tmeas Bend Rem: 100 ms 150m $6-90 \%$			
		Tmeas Band Rem. 80ms 39 m 6-90\%		Measurement time / uniqueness range / object reflectivity	
		Tmeas Band Rem. 70 ms 9.8 m 6-90\%		Measurement time / uniqueness range / object reflectivity	
The functions under Applic. Farom. are not available until the Advanced Menu is activated (see chapter 3.8)		Tmeas Band Rem. 50 ms 150 m 50-90\%		Measurement time / uniqueness range / object reflectivity Measurement time / uniqueness range / object reflectivity Measurement time / uniqueness range / object reflectivity	
		Tmeas Band Rem. $40 \mathrm{~ms} \quad 39 \mathrm{~m}$ 50-90\%			
		Tmeas Bend Rem. 30ms 9.8m 50-90\%			
	DisF. Resolution 1mimin	Disf. Resolution		Display resolution 1 mm	X
		Disp: Resolution $\begin{gathered}\text { Q.1mim }\end{gathered}$		Display resolution 0.1 mm	
	Offset/Preset.	Offset. Direction ... Fositive	Offeet Direction ... Fositive	Offset sign positive	X
			Offset Direction ... nesative	Offset sign negative	
		Offsetvalue [mm] Value: 000000	Offsetvalue [mim] act Val. Q00000	Offset value, entry in mm	0
		Presetualue [mm] Value: 000000	Fresetvalue [mm] act Val. 0000010	Preset value, entry in mm	0
		Freset Calculate ... inactive	Freset Calculate ... active	Trigger of the preset function	
	Return			Return to level 1	
Infut Menu	InF. teach Q1/Q2 Teach Out Q1/02	InF. teach Q1/Q2 Teach Dut Q1/Q2		Teach input is activated	X
		InF. teach Q1/Q2 Infut disabled		Teach input is deactivated	
	Infut activiref Referencing	Infut activiref Referencing		Input is referencing input	X
		Infut activiref Activation + Ref		Input is activation and referencing input	
		Infut activiref Infut disabled		Input activ is deactivated	
	Infut Polarity active HIGH +24 V	Infut. Folarit.'y active HIGH +24 y		All inputs are active high	X
		Infut Folority active LOW QV		All inputs are active low	
	Teach Mode slofe control	Teach Mode slope control		Teach-in, slope controlled	X
		Teach Mode time control		Teach-in, time controlled	
	Return			Return to level 1	

Level 1	Level 2	Level 3	Level 4 Explanation / Notes		$\begin{gathered} \text { Default } \\ 1000 \end{gathered}$
Output Q Menu	Q1 Function sel.	Q1 UpFer Sh. Pt. Value: 001000	Q1 UpFer Sh. Pt. act Value: 001000	Upper switching point of output Q1 in millimetres	
		Q1 Hesteresis Value: 000020	Q1 Hesteresis act Value: 00020	Switching hysteresis of output Q1 in millimeters	20
		Q1 li Fh_{h} //dark lisht switching	Q1 lisht/dark light switching	Q1 is active if an object is in the switching range	X
			Q1 lisht/dark dark switching	Q1 is active if no object is present in the switching range	
		Q1 Driver PHP hizh active	Q1 Driver PHF hish active	Q1 is high-side output (PNP)	X
			Q1 Driver WFH low active	Q1 is low-side output (NPN)	
			Q1 Driver FHP:IAFH FUShFull	Q1 is push-pull output	
		Return		Return to level 2	
	Return			Return to level 1	
Analosue Out.Menus	Cal. Ana. Dutput Current 4-20mA	Cal. Ana. Output Current 4-20mA		Current output calibrated, Voltage output uncalibrated	X
		Cal. Ana. Output. Voltase 1-10V		Voltage output calibrated, Current output uncalibrated	
	Pos for max. val Value: 005000	Fos for max. val act Value: 05000		Distance [mm], at which the max. analogue value is output	5000
	Pos for min. val Value: 000200	Pos for min. val act Value: 00200		Distance [mm], at which the min . analogue value is output	200
	Return	Password Check inactive		Return to level 1	
Service Menu	Password Check inactive			Password for menu access not active	X
		Fassword Check activated		Menu access password active, password: 165 (n. changeable)	
	OISL 30 Serial Ho Vol: 9999			Display of serial number, no changes possible	
	SW V01.20 YYMMDD Val: 31024			Display of software version, no changes possible	
	Parameter YMMMDI Vol: 31024			Display of parameter version, no changes possible	
	Interface-TuFe Analosue Interface			Display of the interface type, no changes possible	
	Return			Return to level 1	
Exit from Menu				Return to measurement mode	

3.7.2 Configuration / menu structure ODSL 30/24... (3 switching outputs)

Level 1
Level 2
Level 3
Level 4
Explanation / Notes
Default
Output Q Ment

Level 4

Explanation / Notes
Default Password for menu access not active
Menu access password active, password: 165 (n . changeable)

Display of serial number, no changes possible

Display of software version, no changes possible
Display of parameter version, no changes possible
Display of the interface type, no changes possible

Return to level 1

Return to measurement mode

3.7.3 Configuration / menu structure ODSL 30/D 232... (digital RS 232)

Level 1

The functions under AFFlic. Farom. are not available until the
Advanced Menu is activated (see chapter 3.8)

Level 2 100ms 150m 6-90\%

Tmeas Bend Rem: Tmeas Bend Rem.

Tmeas Bend Rem. 100 ms 150m 6-90\%
Tmeas Band Rem. 80ms 39m 6-90\%
Tmeas Band Rem. T0ms 9.8m 6-90\%
Tmeas Band Rem. 50ms 150m 50-90\%
Tmeds Bend Rem. $40 \mathrm{~ms} \quad 39 \mathrm{~m}$ 50-90\%
Tmeas Bend Rem. 30ms 9.8 m 50-90\%
Disf: Resolut.ion 1mim
DisF: Resolution 0.1m゙m

Level 4
Explanation / Notes Measurement time / uniqueness range / object reflectivity Measurement time / uniqueness range / object reflectivity

Display resolution 1 mm
Display resolution 0.1 mm

Offset sign positive Offset sign negative Offset value, entry in mm | Offsetvalue [mm] | Offsetvalue [mm] |
| :--- | :--- |
| Value: | 000000 |
| act Val. 000000 | |

Presetwalue [mm] Value:	Presetvalue [mbl act Val. D00000			
Preset Calculate	Preset Calculate		Preset Calculate	
:---:	:---:	:---:		
a. inactive	Preset Calculate			
and active		Trigger of the preset function		

Infut Menus	InF: teach Q1/Q2 Teoch Out Q1/Q2	InF: teach Q1/02 Teach Dut. 01/02
		InF: teach Q1/Q2 Infut disabled
	Infut activiref Referencing	Infut activiref Referencing
		Infut activiref Activation + Ref
		Infut activiref Infut disabled
	Infut Polority active HIGH +24 V	Infut Polority active HIGH +24 V
		Infut Folority active LOW QU
	Return	

Return to level 1

Teach input is activated Teach input is deactivated

Input is referencing input Input is activation and referencing input
Input activ is deactivated
All inputs are active high
X

All inputs are active low
Return to level 1

Level 1
Level 2
Level 3
Level 4
Explanation / Notes
Default
Outeut Q Menu Q1 Function sel.
 oct Value: 000199 put Q1 in millimetres

| Q1 $H: t e r e s i s ~$ | $\mathrm{H} y \mathrm{t}$ teresis Switching hysteresis of output |
| :--- | :--- | :--- |

Volue: 000020
act Value: 00020

Q1 in millimeters

Q1 lisht/dark lisht Switching	Q1 lisht/dark lisht switching	Q1 is active if an object is in the switching range
	Q1 lisht/dark dork Switching	Q1 is active if no object is present in the switching range

$\begin{aligned} & \text { Q1 Driver } \\ & \text { PHP high active } \end{aligned}$	Q1 Driver FHF hish active	Q1 is high-side output (PNP)
	Q1 Driver WPN low active	Q1 is low-side output (NPN)
	Q1 Driver FHFiNFH Fushfull	Q1 is push-pull output

Return to level 2

Q2 Function sel.	Q2 UpFer SW. Pt.	Q2 UpFer Sh. Pt. act Value: 001500	Upper switching point of output Q2 in millimetres	1500
	Q2 Lower Sw. Pt.	Q2 Lower Sw. Pt. act Volue: 000199	Lower switching point of output Q2 in millimetres	199
	02 Hesteresis Value: 000020	Q2 Hesteresis act Volue: 00020	Switching hysteresis of output Q2 in millimetres	20
	02 lisht/ddark lizht switching	Q2 lisht/dark lisht switching	Q2 is active if an object is present in the switching range	X
		Q2 li $\sinh ^{2} / \mathrm{d}$ ark dark switchins	Q2 is active if no object is present in the switching range	
	Q2 Driver PHF hish active	Q2 Driver FHP hish active	Q2 is high-side output (PNP)	X
		Q2 Driver HPN low active	Q2 is low-side output (NPN)	
		Q2 Driver PNF:NFN FushFull	Q2 is push-pull output	
	Return		Return to level 2	
Return			Return to level 1	

Level 1	Level 2	Level 3
Serial Com Menu	Com Function sel ABCII Distonce	Com Function sel ABCII Distance
		Com Function sel ASCII Dist. . 1 mm
		Com Function sel Distance 14 bit.
		Com Function sel Distance 16 bit.
		Com Function sel Distance 20bit.
		com Function sel Remote Control
		Com Function sel switched OFF
	Hode Address Value: 100	Hode Address act Volue: 000
	Baudrate Com Boudrate 9600	$\begin{array}{\|l\|} \hline \text { Boudrate Com } \\ \text { Boudrate } 9600 \\ \hline \end{array}$
		Boudrate Com Boudrate 19200
		Boudrate Com Boudrate 28800
		Boudrate Com Boudrote 38400
		Baudrate Com Boudrate 57600
		Boudrate Col Boudrate 115200
		Boudrate Com Boudrate Ga0
		$\begin{array}{\|l} \hline \begin{array}{l} \text { Boudrate } \\ \text { Boudrate } \end{array} \\ \hline \end{array}$
		$\begin{array}{\|l} \hline \text { Boudrate } \mathrm{Com} \\ \text { Boudrate } \\ 2400 \end{array}$
		Baudrate Com Boudrate 4800
	$\begin{aligned} & \text { Stopbits com } \\ & 1 \end{aligned}$	Stopbits com 1
		$\frac{\text { Stopbits com }}{2}$
	Return	
Service Ment	Password Check inactive	Fassword Check inactive
		Password Check activated
	OnSL 30 Serial HO Val: 99999	
	SW V01.20 YMMMID 31024	
	Parameter YMMMIDI 31024	
	Interface-TyFe RS 232 Interfoce	
	Return	
Exit from Menu		

Level 4

Explanation / Notes

Serial transmission, output in ASCII, 5 bytes, resolut. 1 mm

Default

Serial transmission, output in ASCII, 6 bytes, resolut. 0.1 mm Serial transmission, 2 bytes, 15 m meas. range, res. 1 mm Serial transmission, 3 bytes, 30 m meas. range, res. 1 mm Serial transmission, 4 bytes, 30 m meas. range, res. 0.1 mm Remote control activated,
RS 232 no bus operation
Serial data transmission deactivated

Node address 0 ... 14

Baud rate 9600 bit/s
Baud rate 19200 bit/s
Baud rate 28800 bit/s
Baud rate 38400 bit/s
Baud rate 57600 bit/s
Baud rate 115200 bit/s
Baud rate 600 bit/s
Baud rate 1200 bit/s
Baud rate 2400 bit/s
Baud rate 4800 bit/s

Number of stop bits: 1
Number of stop bits: 2
Return to level 1
Password for menu access not active

Menu access password active, password: 165 (n . changeable)

Display of serial number, no changes possible

Display of software version, no changes possible

Display of parameter version, no changes possible

Display of the interface type, no changes possible

Return to level 1

Return to measurement mode

3.7.4 Configuration / menu structure ODSL 30/D 485... (digital RS 485)

Level 1

The functions under Applic. Forom. are not available until the Advanced Menu is activated (see chapter 3.8)

Explanation / Notes

 Measurement time / uniqueness range / object reflectivity Measurement time / uniqueness range / object reflectivityDisplay resolution 1 mm
Display resolution 0.1 mm
Offset
Direction
... Fositive

Offset. Direction Offset sign negative Offsetvalue [mim] Offset value, entry in mm Preset value, entry in mm Trigger of the preset function Return to level 1

Teach input is activated Teach input is deactivated Input is referencing input Input is activation and referencing input Input activ is deactivated

All inputs are active high
x
Default

Return to level 1
All inputs are active low

Level 1
Level 2
Level 3
Level 4
Explanation / Notes
Default
Output Q Menu Q1 Function sel.

Q1 UfFer Volue:	$\begin{gathered} \text { Su. } \mathrm{Pt} \\ 0010 \mathrm{t} \end{gathered}$
Q1 Lower	001

Q1 UpFer Sh. Ft. Upper switching point of outact Value: 001000 put Q1 in millimetres
Q1 Lower Sw. Ft. Lower switching point of outact Value: Q00199 put Q1 in millimetres

Q1 Husteresis	Q1 $H=s$ teresis	Switching hysteresis of output	
Value:	20		

Q1 lisht/dark light switching	Q1 lisht/dork lisht switching	Q1 is active if an object is in the switching range	X
	Q1 lisht/dark dark switchins	Q1 is active if no object is present in the switching range	
Q1 Driver PHF high active	Q1 Driver PHP high active	Q1 is high-side output (PNP)	X
	Q1 Driver WFH low active	Q1 is low-side output (NPN)	
	Q1 Driver FHP:INFH FUShFull	Q1 is push-pull output	
Return		Return to level 2	

02 Function sel.	Q2 UpFer SW. Ft.	02 Upfer Sh. Pt. act value: 00150 a	Upper switching point of output Q2 in millimetres	1500
	Q2 Lower She Pt,	02 Lower Sw. Pt. act value: bab199	Lower switching point of output Q2 in millimetres	199
	Q2 Hesteresis Value: 000020	Q2 Hesteresis act Value: 00020	Switching hysteresis of output Q2 in millimetres	20
	Q2 lisht/dark light switching	Q2 liヨht/dark light switching	Q2 is active if an object is present in the switching range	X
		Q2 lisht/dark dark switchins	Q2 is active if no object is present in the switching range	
	Q2 Driver PHP hish active	Q2 Driver FHF hish active	Q2 is high-side output (PNP)	X
		02 Driver HFH low active	Q2 is low-side output (NPN)	
		Q2 Driver PHF:NFN FushFull	Q2 is push-pull output	
	Return		Return to level 2	
Return			Return to level 1	

Level 1

Serial Com Menu	Com Function sel ASCII Distance	Com Function sel ASCII Distance
		com Function sel ASCII Dist. .1mm
		Com Function sel Distance 14 bit.
		com Function sel Distance 16 bit
		com Function sel Distance 20bit
		com Function sel Remote Control
		com Function sel switched OFF
	Hode Address Volue: 100	Hode Address act Value: 000
	Boudrate CoM Boudrate 9600	Boudrate com Boudrate 9600
		Boudrate Com Boudrate 19200
		$\begin{array}{\|l\|} \hline \text { Boudrate com } \\ \text { Boudrate } \\ 28800 \\ \hline \end{array}$
		$\begin{array}{\|l} \hline \text { Boudrate } \mathrm{Com} \\ \text { Foudrate } \\ 38400 \end{array}$
		$\begin{array}{\|l} \hline \text { Boudrate com } \\ \text { Boudrate } \\ \hline \end{array}$
		Boudrate com Boudrate 115200
		$\begin{array}{\|l} \hline \text { Boudrate com } \\ \text { Boudrate } 600 \end{array}$
		$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Foudrate Com } \\ \text { Boudrate } \end{array} 1200 \\ \hline \end{array}$
		$\begin{array}{\|l\|} \hline \text { Boudrate coll } \\ \text { Boudrate } 2400 \end{array}$
		$\begin{array}{\|l} \hline \text { Boudrate com } \\ \text { Boudrate } \end{array} 4800$
	Stopbits com 1	Stopbits com 1
		Stopbits com 2
	Return	
Service Menu	Fassword Check inactive	Fassword Check inactive
		Fassword Check activated

$\text { OISL } 30 \mathrm{Se}$	$\begin{array}{\|c\|} \hline \text { erial Ho } \\ 99999 \end{array}$
SW V01.20	YYM1MID
Vol:	31024
Farameter	YYMMID
Interface-TyFe RS 485 Interfoce	
Return	

Exit from Menu

Level 4
Explanation / Notes
Serial transmission, output in ASCII, 5 bytes, resolut. 1 mm Serial transmission, output in ASCII, 6 bytes, resolut. 0.1 mm Serial transmission, 2 bytes, 15 m meas. range, res. 1 mm Serial transmission, 3 bytes, 30 m meas. range, res. 1 mm
Serial transmission, 4 bytes, 30 m meas. range, res. 0.1 mm
Remote control activated via bus commands
Serial data transmission deactivated

Node address 0 ... 14

Baud rate 9600 bit/s
Baud rate 19200 bit/s
Baud rate 28800 bit/s
Baud rate 38400 bit/s
Baud rate 57600 bit/s
Baud rate 115200 bit/s
Baud rate 600 bit/s
Baud rate 1200 bit/s
Baud rate 2400 bit/s
Baud rate 4800 bit/s

Number of stop bits: 1
Number of stop bits: 2

Return to level 1
Password for menu access not active

Menu access password active, password: 165 (n. changeable)

Display of serial number, no changes possible

Display of software version, no changes possible

Display of parameter version, no changes possible

Display of the interface type, no changes possible

Return to level 1

Return to measurement mode

3.7.5 Operating example

The following values are to be configured for an ODSL 30/V...:

- calibrated current output 4 ... 20mA, characteristic curve with positive gradient and measurement range $500 \ldots 3500 \mathrm{~mm}$.
- upper switching point for output Q1 at 3000 mm and lower switching point for output Q1 at 2000 mm .
The device is set to factory settings and is in measurement mode.

Configuring the calibrated current output

Action

Display

Explanation / Notes

Infut. Ment	You get to the configuration menu for the
ODSL $30 . .$.	

Analogue Ments	Out This menu item configures the analogue output.

| Cal Ana. Dutput. |
| :--- | :--- |
| Current. $4-20 \mathrm{~mA}$ | Current output $4 \ldots 20 \mathrm{~mA}$ is already set

Fos for min. val This menu item sets the distance value for volue: 000200 the minimum analogue value.

Pos for min val
act Value: 00200 Ready for editing. Pos for min, val
new yolue->00500 New value has been edited.

Fos for max. val This menu item sets the distance value for Value: 005000 the maximum analogue value.

$\begin{array}{l}\text { Pos for max. val } \\ \text { act Value: } 05000\end{array}$ Ready for editing.

Press the Δ and ∇ keys to change the pres ent value to " 3500 ".

Pos for max. val
new volue->03500 New value has been edited.
Apply the new value by pressing the ENER key.

Save the new value by pressing the ${ }^{\text {ENTER }}$ key.

Change to the menu item "Returrn" by pressing the \triangle and ∇ keys.

Action
Select menu item with the ${ }^{\text {ENTER }}$ key.

Display	
Analogue Ment.	Out.

Explanation / Notes
Select menu item with the ENTER key.

Press the keys \triangle and \square to change to the menu item "Exit from Menu".

Select menu item with the ENTER key.

| Leune electronic | |
| :--- | :--- | :--- |
| Dist. [mim] 10687 | mode |

Configuring switching points Q1

Action

Press an arbitrary key Δ, ∇, or ENTER.
Press the keys \triangle and ∇ to change to the menu item "Output Q Menu".

Select menu item with the ENER key.

Select menu item with the ENER key.

Infut. Ments You get to the configuration menu for the ODSL 30...

Out. Fut Q Menu	This menu item configures the switching outputs.

Q1 Function sel. This menu item configures the switching output Q1.

Q1 UFFer		
Value:	St.	This menu item configures the upper
Qwitching point for output Q1.		

Q1 UpFer SH. Ft,
oct Value: 001000
Q1 UPFer SH. Ft. New value has been edited.
new value->003060
to store fress +
new
vol.: 003000 Applying.

| Q1 Lower | Sh. Pt. |
| :--- | :--- | This menu item configures the lower

Q1 Lower SH. Ft.
act Volue:
Ready for editing.

Q1 Lower SH. Ft.
new

Display
Explanation / Notes

Press the Δ and ∇ keys to change the pres-
ent value to " 2000 ".
Apply the new value by pressing the ENER key.
Press the $\begin{aligned} & \text { and } \\ & \text { ent value to " } 2000 \text { ". } \\ & \text { Apply the new value by pressing the the pre } \\ & \text { key. }\end{aligned}$.
Press the Δ and ∇ keys to change the pre
ent value to " 2000 ".
Apply the new value by pressing the EnER key.
Save the new value by pressing the ${ }^{\text {ETIER }}$ key.
Press the ${ }^{\text {Emen }}$ key to edit the value.
Press the \triangle and ∇ keys to change the pres ent value to "3000".

Apply the new value by pressing the Enter $_{\text {key. }}$. Save the new value by pressing the ${ }^{\text {EMER }}$ key.

Press the keys \triangle and ∇ to change to the menu item
"Q1 Lower Sw. Pt.".
Press the ENER key to edit the value.
to store press 4
new
vol.: 002000 Applying.

Action	Display	Explanation / Notes
Change to the menu item "Return" by pressing the \triangle and ∇ keys.	Return	This menu item leads to the parent level.
Select menu item with the ENTER key.	Q1 Function sel.	Menu level 2.
Change to the menu item "Return" by pressing the \square and \square keys.	Return	This menu item leads to the parent level.
Select menu item with the ENER key.	Output Q Menu	Menu level 1.
Press the keys \square and \square to change to the menu item "Exit from Menu".	Exit from Menu	This menu item exits the configuration menu.
Select menu item with the ENER key.	Leuze electroni list. [mim] 1668	The device has returned to measurement mode

3.8 Advanced Menu (for software versions V01.10 and newer)

Notice!

For information on querying the device software version, see chapter 3.6.5.

In addition to the described functions, additional, new functions are available in the Advanced Menu:

- Setting an offset/preset value to compensate for mounting tolerances
- Reduction in measurement time to as little as 30 ms
- Changing the display resolution

Also available in the Advanced Menu is the menu item AFFlic. Forom.. This can be used to change the measurement value output of the ODSL 30.

Notice!

To protect against unintentional access, the Advanced Menu is hidden from view by default and must first be activated by the user.

Attention!

Please be certain to read the following notices before you activate the advanced mode and change parameters in the menu item AFFlic: Forom..

Activation of the advanced mode

*) Hold down the ${ }^{\text {EnTRA}}$ button during measurement operation for longer than 5 s .
The Advonced Menu? fili tory vest display appears.
\Leftrightarrow Press the Δ or ∇ button to cancel activation of the Advanced Menu.
4) Confirm Yes by pressing the enrap button.

The Advanced Menu is activated now display appears briefly.
The menu item AFFlic. Foram. is now also available in menu level 1.

3.8.1 Setting an Offset/Preset Value - Compensating for Mounting Tolerances

Deviations which occur during mounting of the ODSL 30 can be compensated for with the offset or preset parameter:

- For Offset, a fixed value and sign are specified.
- For Preset, a nominal measurement value is specified; a measurement is then performed using an object located at the desired nominal distance.

Attention!

If the offset or preset results in negative measurement values, zero is output at the interface and on the display.

Setting the offset

Configuration is performed using the keypad and display:
ApFlic. Foram. -> Offset/Freset.
The following can be entered:

- Dff:et Direction

Selection... Fositive or „.. negative, i.e. specifies whether the offset value is added to or subtracted from the measurement value.

- Dffsetualue [mm]

Enter the offset value.
The set offset value is subtracted from the calculated (digital) measurement value of the sensor if negative was set for the Offeet. Direction.

Example:

Measurement value of the ODSL 30: Input:

1500 mm , Offsetvalue: 100 mm , Offset Direction: ... negative

Output on the display and at the interface: 1400 mm

Setting the preset

Configuration is performed using the keypad and display:

```
AfFlic. Farom, -> Offset/Preset
```

Procedure for setting a preset value:

- Enter nominal value -> Fresetualue [min]
- In menu item Freset calculate, select the option $==$ active
- Press the Enize button to confirm.

A measurement is made, the preset is stored and the ODSL 30 is ready.
The offset value is automatically calculated from the measurement value and nominal measurement value (preset value) and entered as the offset in the configuration. A preset is deactivated by entering an offset value of zero.

Example:

Input:
Preset value: 1400 mm ,
Object dist. 1300 mm in front of ODSL 30: Preset Calculation ...active, trigger measurement, an offset of +100 mm is automatically stored

Object distance 1300 mm :
Output on display and at interface: 1400 mm
Object distance 1400 mm :
Output on display and at interface: 1500 mm

3.8.2 Reduction in Measurement Time to as Little as $\mathbf{3 0} \mathbf{m s}$
 Definition of uniqueness range

Due to the periodicity of the sinusoid, the phasing of the signals received by the ODSL 30 limits the determination of unique measurement values to within a specific interval. The length of this interval is called the uniqueness range. A large uniqueness range is equivalent to high background suppression.

Relationship between uniqueness range - luminosity coefficient - measurement time

In the default setting (uniqueness range 150 m , measurement on both light as well as dark objects with luminosity coefficients of $6 \ldots 90 \%$), the measurement time is 100 ms .
By limiting the uniqueness range and the luminosity coefficient (measurements on only light objects with luminosity coefficients of $50 \ldots 90 \%$), the measurement time can be reduced to as little as 30 ms .
Configuration is performed using the keypad and display:
AfFlic. Forom. \rightarrow Tmeas Eend Rem.

Changes to these variables yield measurement times as shown in the following table:

Meas. time [ms]	Uniqueness range [m]	Object luminosity coefficient [\%]	Setting in the menu item Tmeas Eend Rem.
30	9.8	$\begin{gathered} 50 \ldots 90 \\ \text { (light objects) } \end{gathered}$	30 ms 9.8m 50-90\%
40	39		40 ms 39m 50-90\%
50	150		50 ms 150m 50-90\%
70	9.8	$\begin{gathered} 6 \ldots 90 \\ \text { (light and dark objects) } \end{gathered}$	70 ms 9.8m 6-90\%
80	39		80ms 39m 6-90\%
$100{ }^{\text {1) }}$	150		100ms 150m 6-90\%

1) Default setting

Notice!

By using the cooperative target CTS 100x100 (Part No. 501 04599), you ensure that the luminosity coefficient on the surface being measured is 50 ... 90\%.

Attention!

If an object is located at a distance greater than the preselected uniqueness range, incorrect measurements will result (provided the reception signal is sufficiently high)!

Example:

With a uniqueness range of 9.8 m , an object is located at a distance of 1 m . The sensor outputs a correct measurement value of 1 m .

If the object is located at a distance of 10.8 m or 20.6 m or 30.4 m etc. from the sensor, the sensor outputs an incorrect measurement value of 1 m , i.e. a correct measurement value is only output for objects located within the uniqueness range.

Figure 3.11:ODSL 30 measurement values with a uniqueness range of 9.8 m

3.8.3 Changing the Display Resolution

On delivery, the measurement resolution of the ODSL 30 (display) is 1 mm . In the advanced mode, the resolution of the display can be increased to 0.1 mm by configuring with the keypad and display:
AFFlic. Forom. \rightarrow DisF: Resolution D.1mm.

Notice!

This menu item refers only to the display. Changing this parameter has no direct effect on the output at the serial or analogue interfaces.

If you would like to transmit measurement data with a resolution of 0.1 mm using the ODSL 30/D... with serial interface, this can be parameterized at a different location (see chapter 3.4.3).

For the ODSL 30/V..., the measurement range is to be restricted by appropriately configuring the analogue output.

The configuration of a resolution of 0.1 mm is useful when performing measurements on objects with high diffuse reflection and when the measurement data are processed further (e.g. averaging).

4 Technical Data ODSL 30

4.1 General specifications

	ODSL 30
Optical data	
Measurement range	200 ... 30000mm (6 ... 90\% diffuse reflection) 200 ... 65000mm (50 ... 90\% diffuse reflection, only ODSL 30/D...)
Resolution ${ }^{11}$	$0.1 \mathrm{~mm} / 1 \mathrm{~mm}$ (factory setting)
Light source	laser (modulated light)
Wavelength	655 nm (visible red light)
Laser class	2 (in accordance with EN 60825-1)
Light spot diameter	divergent, $\varnothing 6 \mathrm{~mm}$ at a distance of 10 m
Minimum object size	$50 \times 50 \mathrm{~mm}^{2}$ at a distance of 10 m (6 ... 90\% diffuse reflection)
Timing	
Measurement time ${ }^{2)}$	$30 \ldots 100 \mathrm{~ms}$ (factory setting: 100 ms)
Delay before start-up	≤ 1 s
Mechanical data	
Housing	metal
Optics cover	glass
Weight	650 g
Connection type	M12 connector, 8-pin
Environmental data	
Ambient temperature (operation ${ }^{3} /$ storage)	$-10 \ldots+45^{\circ} \mathrm{C} /-40 \ldots+70^{\circ} \mathrm{C}$
Ambient light limit	£ 5kLux
Protective circuit ${ }^{4}$	2, 3
VDE safety class ${ }^{5}$	II, all-insulated
Protection class	IP 67
Standards applied	IEC 60947-5-2
Certifications	UL508, C22.2No.14-13 ${ }^{\text {6) 7) }}$

1) Resolution on the LC display
2) Configurable, depends on the reflectivity of the object and on the max. detection range
3) After an operating time of 30 min. , the device has reached the operating temperature required for an optimal measurement.
4) $2=$ polarity reversal protection, $3=$ short-circuit protection for all outputs
5) Rating voltage 250 VAC
6) For UL applications: only for use in "Class 2" electrical circuits according to NEC
7) These sensors shall be used with UL Listed Cable assemblies rated $30 \mathrm{~V}, 0.5 \mathrm{~A}$ min, in the field installation, or equivalent (categories: CYJV/CYJV7 or PVVA/PVVA7)

4.2 Device-specific data

4.2.1 ODSL 30/V-30M-S12

	ODSL 30/V-30M-S12
Electrical data	
Operating voltage $\mathrm{U}_{\mathrm{B}}{ }^{1)}$	$18 . . .30 \mathrm{VDC}$ (incl. residual ripple)
Residual ripple	$\leq 15 \%$ of U_{B}
Power consumption	$\leq 4 W$
Switching output ${ }^{2)}$	1 PNP transistor output, HIGH active (default), NPN transistor or push-pull through configuration
Signal voltage high/low	$\geq\left(\mathrm{U}_{\mathrm{B}}-2 \mathrm{~V}\right) / \leq 2 \mathrm{~V}$
Output current	max. 100mA per transistor output
Analog output ${ }^{2)}{ }^{3)}$	1 voltage output $1 \ldots 10 \mathrm{~V}\left(R_{L} \geq 2 \mathrm{kOhm}\right)$ 1 current output $4 \ldots 20 \mathrm{~mA}\left(R_{\mathrm{L}} \leq 500 \mathrm{Ohm}\right)$
Error limits ${ }^{4}$	
Absolute measurement accuracy ${ }^{5)}$	measurement range up to 2.5m: $\pm 2 \%$ without referencing, $\pm 1 \%$ with referencing measurement range 2.5 m up to 5 m : $\pm 1.5 \%$ without referencing, $\pm 1 \%$ with referencing measurement range 5 m up to 30 m : $\pm 1 \%$ without referencing, $\pm 1 \%$ with referencing
Repeatability ${ }^{6)}$	$\pm 0.5 \%$ of measurement value

1) For UL applications: only for use in "Class 2 " electrical circuits according to NEC
2) LC display and keypad at the device for configuration
3) The current output (default) or the voltage output is calibrated
4) In the temperature range of $0^{\circ} \mathrm{C} \ldots+45^{\circ} \mathrm{C}$, measurement object $\geq 50 \times 50 \mathrm{~mm}^{2}$; at temperatures $<0^{\circ} \mathrm{C}$ different error limits apply;
5) luminosity coefficient $6 \% \ldots 90 \%$, temperature range $0^{\circ} \mathrm{C} \ldots+45^{\circ} \mathrm{C}$
6) Same object, identical environmental conditions, measurement object $\geq 50 \times 50 \mathrm{~mm}^{2}$

4.2.2 ODSL 30/24-30M-S12

	ODSL 30/24-30M-S12
Electrical data	
Operating voltage $\mathrm{U}_{\mathrm{B}}{ }^{11}$	$10 \ldots 30 \mathrm{VDC}$ (incl. residual ripple)
Residual ripple	$\leq 15 \%$ of U_{B}
Power consumption	$\leq 4 \mathrm{~W}$
Switching outputs ${ }^{2)}$	3 PNP transistor outputs, HIGH active (default), NPN transistor or push-pull through configuration
Signal voltage high/low	$\geq\left(\mathrm{U}_{\mathrm{B}}-2 \mathrm{~V}\right) / \leq 2 \mathrm{~V}$
Output current	max. 100 mA per transistor output
Error limits ${ }^{3}$	
Absolute measurement accuracy ${ }^{4)}$	$\pm 5 \mathrm{~mm}$ (6\% diffuse reflection) $\pm 2 \mathrm{~mm}$ (90% diffuse reflection) after referencing
Repeatability ${ }^{5)}$	$\pm 2 \mathrm{~mm}$ ($6 . . .90 \%$ diffuse reflection)

1) For UL applications: only for use in "Class 2" electrical circuits according to NEC
2) LC display and keypad at the device for configuration
3) In the temperature range of $0^{\circ} \mathrm{C} \ldots+45^{\circ} \mathrm{C}$, measurement object $\geq 50 \times 50 \mathrm{~mm}^{2}$; at temperatures $<0^{\circ} \mathrm{C}$ different error limits apply;
4) Luminosity coefficient $6 \% \ldots 90 \%$, temperature range $0^{\circ} \mathrm{C} \ldots+45^{\circ} \mathrm{C}$
5) Same object, identical environmental conditions

4.2.3 ODSL 30/D 232-30M-S12

	ODSL 30/D 232-30M-S12
Electrical data	
Operating voltage $\mathrm{U}_{\mathrm{B}}{ }^{1 /}$	$10 \ldots 30 \mathrm{VDC}$ (incl. residual ripple)
Residual ripple	$\leq 15 \%$ of U_{B}
Power consumption	$\leq 4 W$
Switching outputs ${ }^{2)}$	2 PNP transistor outputs, HIGH active (default), NPN transistor or push-pull through configuration
Signal voltage high/low	$\geq\left(\mathrm{U}_{\mathrm{B}}-2 \mathrm{~V}\right) / \leq 2 \mathrm{~V}$
Output current	max. 100mA per transistor output
Serial interface	RS 232, 9600 Baud (default), baud rate configurable
Transmission protocol	see chapter 3.4.3
Error limits ${ }^{3}$	
Absolute measurement accuracy ${ }^{4)}$	$\pm 5 \mathrm{~mm}(6 \ldots 90 \%$ diffuse reflection), $\pm 2 \mathrm{~mm}$ (90% diffuse reflection) after referencing
Repeatability ${ }^{5}$	$\pm 2 \mathrm{~mm}$ ($6 \ldots 90 \%$ diffuse reflection)

1) For UL applications: only for use in "Class 2" electrical circuits according to NEC
2) LC display and keypad at the device for configuration
3) In the temperature range of $0^{\circ} \mathrm{C} \ldots+45^{\circ} \mathrm{C}$, measurement object $\geq 50 \times 50 \mathrm{~mm}^{2}$; at temperatures $<^{\circ} 0^{\circ} \mathrm{C}$ different error limits apply;
4) Diffuse reflectance $6 \% \ldots 90 \%$, temperature range $0^{\circ} \mathrm{C} \ldots+45^{\circ} \mathrm{C}$
5) Same object, identical environmental conditions

4.2.4 ODSL 30/D 485-30M-S12

	ODSL 30/D 485-30M-S12
Electrical data	
Operating voltage $\mathrm{U}_{\mathrm{B}}{ }^{1)}$	$10 \ldots 30 \mathrm{VDC}$ (incl. residual ripple)
Residual ripple	$\leq 15 \%$ of U_{B}
Power consumption	$\leq 4 \mathrm{~W}$
Switching outputs ${ }^{2)}$	2 PNP transistor outputs, HIGH active (default), NPN transistor or push-pull through configuration
Signal voltage high/low	$\geq\left(\mathrm{U}_{\mathrm{B}}-2 \mathrm{~V}\right) / \leq 2 \mathrm{~V}$
Output current	max. 100 mA per transistor output
Serial interface	RS 485, 9600 Baud (default), no termination, baud rate configurable
Transmission protocol	see chapter 3.4.3
Error limits ${ }^{3}$	
Absolute measurement accuracy ${ }^{4)}$	$\begin{aligned} & \pm 5 \mathrm{~mm} \text { (} 6 \ldots 90 \% \text { diffuse reflection), } \\ & \pm 2 \mathrm{~mm} \text { (} 90 \% \text { diffuse reflection) after referencing } \\ & \hline \end{aligned}$
Repeatability ${ }^{5)}$	$\pm 2 \mathrm{~mm}$ ($6 \ldots 90 \%$ diffuse reflection)

1) For UL applications: only for use in "Class 2" electrical circuits according to NEC
2) LC display and keypad at the device for configuration
3) In the temperature range of $0^{\circ} \mathrm{C} \ldots+45^{\circ} \mathrm{C}$, measurement object $\geq 50 \times 50 \mathrm{~mm}^{2}$; at temperatures $<0^{\circ} \mathrm{C}$ different error limits apply;
4) Diffuse reflectance $6 \% \ldots 90 \%$, temperature range $0^{\circ} \mathrm{C} \ldots+45^{\circ} \mathrm{C}$
5) Same object, identical environmental conditions

4.3 Dimensioned and connection drawings

All ODSL 30 variants

Figure 4.1: Dimensioned drawing ODSL 30 variants

ODSL 30/V... (analogue output)

Figure 4.2: Electrical Connection ODSL 30/V...
ODSL 30/24... (3 switching outputs)

Figure 4.3: Electrical Connection ODSL 30/24...
ODSL 30/D 232... (digital output RS 232)

Figure 4.4: Electrical Connection ODSL 30/D 232...

ODSL 30/D 485... (digital output RS 485)

Figure 4.5: Electrical Connection ODSL 30/D 485...

Attention

For UL applications, use is only permitted in class 2 circuits in accordance with the NEC (National Electric Code).

5 Type overview and accessories

5.1 Type overview

Designation	Order no.	Description
ODSL 30/V-30M-S12	50039447	Measurement range 0 $\ldots 30000 \mathrm{~mm}$, analog current/voltage output, 1 configurable switching output, laser class 2
ODSL 30/24-30M-S12	50040720	Measurement range: 0 ... 30000mm 3 configurable switching outputs, laser class 2
ODSL 30/D232-30M-S12	50041203	Measurement range 0 ... 65000 mm, RS 232 serial interface, two configurable switching outputs, laser class 2
ODSL 30/D485-30M-S12	50041204	Measurement range 0 $\ldots 65000 \mathrm{~mm}$, RS 485 serial interface, two configurable switching outputs, laser class 2

Table 5.1: ODSL 30 type overview

5.2 Accessories

The following accessories are available for the ODSL 30:

Designation	Order no.	Short descriptions
Connection cables		
K-D M12A-8P-2m-PUR	50104591	Connection cable M 12, 8-pin, axial, length 2 m
K-D M12A-8P-5m-PUR	50104590	Connection cable M12, 8-pin, axial, length 5 m
K-D M12A-8P-10m-PUR	50106882	Connection cable M12, 8-pin, axial, length 10m
CB-M12-15000E-8G	678062	Connection cable M12, 8-pin, axial, length 15m
CB-M12-25000E-8G	678063	Connection cable M12, 8-pin, axial, length 25 m
CB-M12-50000E-8G	678064	Connection cable M 12, 8-pin, axial, length 50m
User-configurable connectors		
KD 01-8-BA	50112157	M12 connector (socket), 8-pin, axial
Cooperative target		
CTS 100x100	50104599	Cooperative target, luminosity coefficient $50 \ldots 90 \%$
PC accessories		
UPG 5 ${ }^{1 \prime}$	50039627	PC-adapter for ODSL30
ODS software ${ }^{2)}$	Free download from www.leuze.com	Software for measurement value visualization of the ODSL 30
Accessories for fieldbus connection for ODSL 30/D232-30M-S12 with RS 232 interface		
MA 204i	50112893	Modular fieldbus connection for field use, interfaces: RS232 / PROFIBUS DP
MA 208i	50112892	Modular fieldbus connection for field use, interfaces: RS232 / Ethernet TCP/IP
MA 235i	50114154	Modular fieldbus connection for field use, interfaces: RS232 / CANopen
MA 238i	50114155	Modular fieldbus connection for field use, interfaces: RS232 / EtherCAT
MA 248i	50112891	Modular fieldbus connection for field use, interfaces: RS232 / PROFINET-IO
MA 255i	50114156	Modular fieldbus connection for field use, interfaces: RS232 / DeviceNet
MA 258i	50114157	Modular fieldbus connection for field use, interfaces: RS232 / Ethernet/IP
K-DS M12A-MA-8P-3m-S-PUR	50115050	Connection cable for ODSL 30/D232-30M-S12 with RS232 to modular interfacing units MA $2 x x i$, cable length 3 m

Table 5.2: Accessories ODSL 30

1) Required for the visualization of the measurement values via the ODS software.
2) With the ODSL $30 \ldots$, this can only be used exclusively for the visualization of measurement values on the PC; configuration is not possible!

Notice

In connection with the ODSL 30, the software can only be used for the display of measurement values, but not for the configuration of the device.

6 Installation

6.1 Storage, transportation

Unpacking

${ }^{4}$ Check the packaging for any damage. If damage is found, notify the post office or shipping agent as well as the supplier.
${ }^{4}$) Check the delivery contents using your order and the delivery papers:

- Delivered quantity
- Device variant and model as indicated on the nameplate
- Accessories
- Operating manual
${ }^{4}$ Save the original packaging for later storage or shipping.
If you have any questions concerning your shipment, please contact your supplier or your local Leuze electronic sales office.

4) Observe the applicable local regulations when disposing of the packaging materials.

6.2 Mounting

Notice

The mounting device BT 30 is already included in the delivery package of the ODSL 30.
View through a chase

Figure 6.1: View through a chase
If the ODSL 30 has to be installed behind a cover, the chase has to have at least the size of the optical glass cover. Otherwise, a correct measurement is not possible or can not be guaranteed.

6.3 Teach-in

You can adjust the upper switching points by means of teach-in; with the ODSL 30/V..., you can also set the characteristic output curve of the analogue output by means of teach-in. For teach-in, there are differences among the various device variants:

Teach procedure for ODSL 30/V... (1 switching output)

$\left.{ }_{4}\right)_{\text {Position the measurement object at the desired distance. Connect the teach input }}$ teach Q1 for $\geq 2 \mathrm{sec}$. to $+\mathrm{U}_{\mathrm{B}}$. After that, connect the teach input to GND. The switching output is taught.
Teaching takes place towards the switching point.
These default values are preset:

- Function characteristics of the switching output: "light switching"
- Lower switching point: 199 mm
- Upper switching point: 1000 mm
- Hysteresis: 20 mm

You can change these values using the keypad and LC display.

Teach-in of the characteristic output curve of the ODSL 30/V...

In addition to the edge-controlled teach-in (slope control) of the switching outputs, teachin of the characteristic output curve is also possible via a teach line for devices with software version V01.10 and newer (see chapter 3.6.5). The following steps are required for the line teach-in of the analogue characteristic curve:

1. Activation of the analogue line teach function via the keypad and menu.

Activate InFut Menu -> Teach Mode -> Teach Mode time control.
2. Position measurement object at the desired measurement distance.
3. The respective teach function is activated by applying the active level (default $+\mathrm{U}_{\mathrm{B}}$) to the teach input "Teach Q1" (pin5). The teach event is indicated by the flashing of the LEDs and on the display.

Teach function	Duration of teach signal	Green LED	Yellow LED
Upper switching point switching output Q1	$2 \ldots 4 \mathrm{~s}$	flash synchronously	
Distance value for analogue output $1 \mathrm{~V} / 4 \mathrm{~mA}$	$4 \ldots 6 \mathrm{~s}$	continuous light	flashing
Distance value for analogue output $10 \mathrm{~V} / 20 \mathrm{~mA}$	$6 \ldots 8 \mathrm{~s}$	flashing	continuous light

4. To finish the teach event, disconnect the teach input from the teach signal after the desired time.
5. A successful teach event is signaled by the end of the flashing of the LEDs. The menu entries can be used to check that the teach values are properly accepted and to make any changes.

Error messages

Rapid flashing of the green LED following a teach event indicates an unsuccessful teach event. The sensor remains ready for operation and continues to function with the old values.

Remedy:

- Repeat teach event or
- Activate teach input for more than 8 s or
- Disconnect sensor from voltage to restore the old values.

Teach procedure for ODSL 30/D... (2 switching outputs)

${ }^{4}$) Position the measured object at the first desired distance. Connect the teach input teach Q1/Q2 for $\geq 2 \mathrm{sec}$. to $+\mathrm{U}_{\mathrm{B}}$. The LEDs are flashing simultaneously. Reconnect the teach input to GND. The first switching output is taught.
${ }_{4}{ }^{4}$ Now, position the measured object at the second desired distance. Connect the teach input teach Q1/Q2 for ≥ 2 sec. to $+U_{B}$. The LEDs now flash alternately. Reconnect the teach input to GND. The second switching output is taught. In non-operational mode, the teach input is connected to GND.

Teaching takes place towards the switching points.
These default values are preset:

- Function characteristics of the switching outputs: "light switching"
- Lower switching point Q1: 199 mm , lower switching point Q2: 199 mm
- Upper switching point Q1: 1000 mm , upper switching point Q2: 1500 mm
- Hysteresis: 20 mm each

You can change these values using the keypad and LC display.

Teach procedure for ODSL 30/24... (3 switching outputs)

${ }^{4}$) Switching outputs Q1/Q2: Teach procedure is the same as for ODSL 30/D...
${ }^{4}$) Switching output Q3: Teach procedure is the same as for ODSL 30/V... via teach input teach Q3

Teaching takes place towards the switching points.
These default values are preset:

- Function characteristics of the switching outputs: "light switching"
- Lower switching point Q1: 199 mm , lower switching point Q2: 199 mm , lower switching point Q3: 199 mm
- Upper switching point Q1: 1000 mm , upper switching point Q2: 1500 mm , upper switching point Q3: 2000 mm
- Hysteresis: 20 mm each

You can change these values using the keypad and LC display.

7 Software

General description

The ODS 96 configuration software can be used with a connected ODSL 30 to display measurement values.
The software is available via download from www.leuze.de.

Notice
In connection with the ODSL 30, the ODS 96 configuration software can only be used for the display of measurement values, but not for the configuration of the device. For this purpose, the left arrow key (up arrow) on the keypad must be pressed while the device is switched on. After that, the ODSL 30 is in PC configuration mode.

7.1 Connecting to a PC

7.1.1 Connection of the ODSL 30 to a PC

The ODSL 30 is connected to a PC via the programming terminal UPG 5. The terminal is simply inserted between the ODSL 30 and the connection cable. The UPG 5 is connected to the PC via the serial interface cable that ships with the UPG 5.

Figure 7.1: Connection of the ODSL 30 to a PC via the programming terminal UPG 5

Notice

The measurement values of the ODSL 30 can visualized on the PC using the ODS 96 configuration software. However, a configuration of the device via the ODS 96 configuration software is not possible. Visualization of the measurement values is only possible up to 15m!

7.2 Installation of the ODS 96 configuration software

Requirements for the installation of the configuration software:

- Windows 95/98/NT/2000/XP,
- 486 processor or faster,
- 4 MByte RAM,
- 2 MByte free disk space
- and a CD-ROM drive.

Starting the installation file

${ }^{4}$) Insert the installation CD into your CD drive.
$\stackrel{4}{4}$ Choose Start \rightarrow Run. Insert drive and name of the installation file (e.g.: d:Isetup.exe) and hit OK.
${ }^{4}$) In the following window, define the path for the installation directory and confirm with End.

Figure 7.2: Installation directory
) Follow the installation routine.

7.3 Starting the program

After successful installation and restart of the computer, the configuration software is ready to use.
${ }^{\text { }}$ Select the ODS 96B configuration software icon from the program group.

Without connected ODSL 30, the following window appears after the program start, letting you choose a device:

Additional window without connected ODSL 30

Figure 7.3: Device selection
If an ODSL $30 \ldots$ is connected, the following window appears:

Figure 7.4: Start menu before measurement
The software automatically recognises the connected sensor with its default settings.

7.3.1 Description of the Menu Commands

Menu item "File"

Under menu item File you can switch to configuration mode or quit the program.

Menu item "Type!"

The menu item Type! is used for the default setting of parameters and the generation of configuration files without an ODS being connected. It lets you choose a device variant that you wish to configure.

Menu item "Options"

The following three possibilities are offered under Options:

- Language selection to choose the language for dialog.
- Interface to choose the port to which the cable to the ODSL 30 is connected (standard: COM 1). The configuration software automatically recognizes the interface used. Choosing a different port could become necessary if more than one sensor is connected.
- Change password: first enter your old, then your new password and confirm with OK.

Menu item "?"

Choose About..., for information on ODS 96 configuration software (product, program, device version, as well as for the address of Leuze electronic).

7.3.2 Trade shows

By clicking the button Start measurement, the current measurement data of the connected ODSL 30 are transmitted and plotted in the adjacent diagram as a function of time.

Figure 7.5: Display of the current measurement values of the ODSL 30 connected
By clicking the button Stop Measurement, you terminate the transmission of the measurement values from the ODSL 30 and freeze the measurement diagram.
With a subsequent click on the button Print, the diagram is output on your standard Windows printer.

[^0]: 1) Luminosity coefficient $6 \ldots 90 \%$ throughout the entire temperature range, measurement object $\geq 50 \times 50 \mathrm{~mm}^{2}$.
 ODSL 30/D...Measurement range up to 65 m , luminosity coefficient 50 ... 90%
