Overview table: What must be considered when it's necessary to exchange the PSENsgate1 for the new improved PSENsgate2: | | Type of adjustment | What to do | |---|---|--| | 1 | Installation -
Actuator | New drill holes for the actuator (Chapter 1) Installation of actuator with & without manipulation protection (Chapter 2) | | 2 | Installation –
Sensor | - No adjustment required | | 3 | Conversion from left to right-hinged | Only the actuator requires adjustment (Chapter 3) → Simplified | | 4 | Cable routing | - Now with stable PG thread (Chapter 4) | | 5 | Wiring | New connector pin assignment due to new solenoid drive (Chapter 5) New wiring on PNOZ units with relay outputs (Chapter 5.3.1) New wiring on PNOZ units with semiconductor outputs (Chapter 5.3.2) New wiring on 3rd party units with dual-pole semiconductor outputs (Chapter 5.3.3) | | 6 | Adjustment in tool configuration PNOZ / PNOZmulti | - No adjustment is required | | 7 | Diagnostics | Access request changed (LED instead of illuminated pushbutton) (Chapter 6) Blink codes reduced and simplified → Simplified | Document: Document 1 Author: **Technical Support** #### **Contents** | 1. | Act | tuator drilling template | 3 | | | |----|-----|---|----|--|--| | 2. | | ounting the actuator, with and without manipulation protection | | | | | 3. | | | | | | | 4. | | | | | | | 5. | | ctrical connection | | | | | | 5.1 | Overview of connector pin assignment | 5 | | | | | 5.2 | Driving the solenoid supply | | | | | | 5.3 | Wiring examples: | 7 | | | | | 5.3 | 3.1 PNOZ with relay outputs | 7 | | | | | 5.3 | 3.2 PNOZ with semiconductor outputs and downstream coupling relays: | 8 | | | | | 5.3 | 3.3 Dual-pole semiconductor outputs: | 9 | | | | | 5.4 | Driving the solenoid supply | 10 | | | | 6. | LEC | O and pushbutton display | 11 | | | | 7 | Cor | nnection terminals | 12 | | | ### 1. Actuator drilling template The drilling template used to mount the bolt has changed. As a result, new mounting holes are required at the installation site. Red drill holes, actuator: Drilling template for PSENsgate 1 Black drill holes, actuator: Drilling template for PSENsgate 2 Drilling template for sensor stays the same ### 2. Mounting the actuator, with and without manipulation protection With PSENsgate 2 it is possible to mount the actuator with and without manipulation protection. Manipulation protection is enabled by 2 additional mounting holes, which are concealed after installation. ### 3. Required conversion from left to right-hinge on gate Previously: necessary to convert actuator unit and sensor end stop #### PSENsgate 2 - new: Only the actuator unit needs to be converted (Chapter 6.3 of operating manual) ### 4. Cable routing A PG thread cable gland is used on the PSENsgate2. This enables 2 cables to be introduced with a maximum 10mm external diameter. When delivered, one of the insertion openings is sealed with a plug. This can be removed if necessary. If cables with a smaller or larger diameter are used, the PG thread can be swapped for standard compatible inserts. **Note:** If all 16 pins per connector are used, only a max. cable cross section of 0.25mm² is possible. As a result, a max. 30 metre cable length is possible. **Solution:** To achieve longer cable lengths, several cores can be wired in one terminal (may be relevant with solenoid drive). As a result, the cable cross sections are added together / the cable resistances are halved. #### 5. Electrical connection ### 5.1 Overview of connector pin assignment The connector pin assignment of the PSENsgate 2 has changed slightly. The table below shows exactly where the changes have been made. The connector pin assignment of the PSENsgate basic versions 1: E-STOP + 2 pushbuttons and 2: E-STOP + 4 pushbuttons are listed in the table. The following applies: - Black text: No change Red text: Change from PSENsgate 1 to PSENsgate 2 - Blue text: Change from PSENsgate 1 to PSENsgate 2, which refers to the 4-pushbutton type | | PSENsgate 1 –
Connector X1
(570701) | PSENsgate 1 –
Connector X2 (570701) | PSENsgate 2 - X1
(570801) | PSENsgate 2 - X2
(570801) | |----|---|--|------------------------------|------------------------------| | 1 | 24V | 24V | 24V | 24V | | 2 | GND | GND | GND | GND | | 3 | OSSD 1 | Input 1 | OSSD 1 | Input 1 | | 4 | OSSD 2 | Input 2 | OSSD 2 | Input 2 | | 5 | Access Request | Access Request | Access Request | Access Request | | 6 | Safe 24V range | Safe 24V range | Safe 24V range | Safe 24V range | | 7 | Safe 0V range | Safe 0V range | Safe 24V range | Safe 24V range | | 8 | Lock | Lock | Lock | Lock | | 9 | Signal output Y32 | | Signal output Y32 | | | 10 | E-Stop 1.1 | | E-Stop 1.1 | | | 11 | E-Stop 2.1 | | E-Stop 2.1 | | | 12 | E-Stop 2.2 | | E-Stop 2.2 | | | 13 | E-Stop 1.2 | | E-Stop 1.2 | Pushbutton 3 Ch. 2* | | 14 | LED pushbutton 1 | Pushbutton 1 | LED pushbutton 3* | Pushbutton 3 Ch. 1* | | 15 | LED pushbutton 2 | Pushbutton 2 | LED pushbutton 4* | Pushbutton 4 Ch. 1* | | 16 | LED pushbutton 3 | Pushbutton 3 | Signal output E-Stop | Pushbutton 4 Ch. 2* | ## 10 - 10 - 2013 v 1 # Conversion guide PSENsgate1 to PSENsgate2 ### 5.2 Driving the solenoid supply #### PSENsgate 1 - previously: A dual-pole 24V and 0V drive was required for the solenoid supply. #### PSENsgate 2 - new: Solenoid drive now only requires 24V As relay contacts were previously recommended for the dual-pole drive, the supply to the relay contacts must be adapted if necessary. Safe semiconductor outputs can now also be used for drive in PL e. Document: Document 1 Author: **Technical Support** ### 5.3 Wiring examples: The following wiring examples show how the wiring has changed. It is also important to note that changing a PSENsgate 1 for a PSENsgate 2 does not require any program changes in the PNOZmulti Configurator! #### 5.3.1 PNOZ with relay outputs Document: Document 1 Author: Technical Support #### 5.3.2 PNOZ with semiconductor outputs and downstream coupling relays: 0-12-2013 v 1 0 Document: Docu Author: Tecl Document 1 Technical Support #### **5.3.3** Dual-pole semiconductor outputs: 0-12-2013 v 1.0 Document: Document 1 Author: Technical Support ## 30-12-2013 v 1 # Conversion guide PSENsgate1 to PSENsgate2 ### 5.4 Driving the solenoid supply #### PSENsgate 2 - new: A dual-pole 24V and 0V drive was required for the solenoid supply. #### PSENsgate 2 - new: Solenoid drive now only requires 24V As relay contacts were previously recommended for the dual-pole drive, the supply to the relay contacts must be adapted if necessary. Safe semiconductor outputs can now also be used for drive in PL e. Document: Document 1 Author: **Technical Support** ### 6. LED and pushbutton display The status LED display on the PSENsgate2 has changed. PSENsgate 1 - previously: Power/Fault Input Safety Gate Pushbutton 1 (LED) Pushbutton 2 (LED) #### PSENsgate 2 - new: Device Same function as previous Power/Fault Input Same function as previously Lock / Area Safe Display for bolt tongue and guard locking device unlocked / locked and (new!) access request (previously pushbutton 2 (LED)) Safety Gate Same function as previously Pushbutton 1 (LED) Same function as previously **Note:** The number and complexity of the flash codes has also been reduced. Further details will be available in the operating manual, which will be published in the next few days. #### 7. Connection terminals PSENsgate 1 - previously: Terminal X1-7/X2-7: 0V PSENsgate 2 - new: Terminal X1-7/X2-7: 24V 30 - 12 - 2013 v 1.0