Description

These switches are used on machines where the hazardous conditions remain for a while, even after the machines have been switched off, for example because of mechanical inertia of pulleys, saw disks, parts under pressure or with high temperatures. Thus, the switches can also be used if individual guards are only to be opened under certain conditions.

Versions with mode 1 (safety outputs active when guard closed and locked) are interlocks with guard locking acc. to ISO 14119; the product is labelled with the symbol shown.

Maximum safety with a single device

 D 3 The NG series switches are constructed with redundant electronics. As a result, the maximum PL e and SIL 3 safety levels can still be achieved through the use of a single device on a guard. This avoids expensive wiring in the field and allows faster installation. Inside the control cabinet, the two electronic safety outputs must be connected to a safety module with OSSD inputs or to a safety PLC.Series connection of several switches

One of the most important features of the NG series is the possibility of connecting up to 32 sensors in series, while still maintaining the maximum safety levels PL e laid down in EN 13849-1 and SIL 3 acc. to EN 62061.
This connection type is permissible in safety systems which have a safety module at the end of the chain that monitors the outputs of the last NG switch. The fact that the PL e safety level can be maintained even with 32 sensors connected in series demonstrates the extremely secure structure of each single device.

Series connection with other devices

The NG series features two safety inputs and two safety outputs, which can be connected in series with other Pizzato Elettrica safety devices. This option allows the creation of safety chains containing various devices. For example, stainless steel safety hinges (HX BEE1 series), transponder sensors (ST series) and door lock sensors (NG series) can be connected in series while still maintaining the maximum PL e and SIL 3 safety levels.

RFID actuators with high coding level

The NG series is provided with an electronic system based on RFID technology to detect the actuator. This allows to provide each actuator with different coding and makes it impossible to tamper with a device by using another actuator of the same series. Millions of different coding combinations are possible for the actuators. They are therefore classified as high level coded actuators, according to EN ISO 14119.

Dustproof

The switch is provided with a through hole for inserting the actuator. Thanks to this unique feature, any dust that enters the actuator hole can always come out on the opposite side instead of remaining inside. Moreover, the lock pin is provided with a diaphragm seal, making the system suitable for critical environments with a high level of dust.

Centring

 stically reduces the probability of a collision between the switch and the actuator, making it possible to install the device even on inaccurately closing doors.

Holding force of the locked actuator

Q 0 The strong interlotees a maximum actuator holding force of $F_{1 \text { max }}=9750 \mathrm{~N}$. This is one of the highest values currently available on the market today, making this device suitable for heavyduty applications.

Integrated control devices

The switch is also available with elevated cover. Control devices such as buttons, emergency buttons, indicator lights or selectors can thereby be attached directly to the switch together with corresponding contact blocks.
The result is a compact solution with direct access to control devices without needing to install them separately on the switch panel or in their own housing. The devices can be illuminated and, thanks to the PUSH-IN spring-operated connections, wiring is quick and intuitive.

Push-in spring-operated connections

The switch is provided with a PUSH-IN type spring-operated connection system on the inside. This technology allows wiring to be performed quickly and easily, as the wire just needs to be inserted into the appropriate hole in order to establish the electrical connection and automatically secure the wire. This operation can be performed with rigid or flexible wires with a crimped wire-end sleeve and requires no tools. Release is obtained by pressing the appropriate wire-releasing button.

Six LEDs for immediate diagnosis

As the LEDs have been designed for quick immediate diagnosis, the status of each input and output is highlighted by one specific LED. This makes it possible to quickly identify the interruption points in the safety chain, which device is released, which door is opened and any errors inside the device. All of this at a glance, without needing to decode complex flashing sequences.

Holding force of the unlocked actuator

The inside of each switch features a device which holds the actuator in its closed position. Ideal for all those applications where several doors are unlocked simultaneously, but only one is actually opened. The device keeps all the unlocked doors in their position with a retaining force of 30 N , stopping any vibrations or gusts of wind from opening them.

Function for protecting against recoil forces

is closed too quickly or with so much force that the recoil would cause it to open again, a special function in the NG switch prevents locking. This function prevents the immediate locking of the door if the lock signal is applied. This protects the switch against recoil forces that occur during instantaneous locking. This serves to protect the switch from damage and forces the operator to close the door more gently.

Key release device and emergency release button

The key release device (auxiliary release) is used to permit unlocking of the actuator only by personnel in possession of the key. The device also functions with no power supply and, once actuated, prevents the guard from being locked.
The emergency release button (escape release) allows actuator release and immediate opening of the door. Generally used in machines within which an operator could inadvertently become trapped, it faces towards the machine interior, to allow the operator to exit even in the event of a power failure. The button has two stable states and can be freely extended in length with suitable extensions (see accessories).
Both devices can be positioned on the four sides of the switch. As a result, it can be installed both towards the interior and towards the exterior of the machine.

Two safety output actuation modes

CLOSED OR CLOSED \& LOCK Two different activation modes are available for the switch: active safety outputs with guard closed and locked (mode 1) for machines with inertia or active safety outputs with guard closed (mode 2) for machines without inertia.

Protection against tampering

Each actuator of the NG series is supplied with four protective caps. Not only do the caps prevent dirt from accumulating and simplify cleaning, they also block access
O to the fastening screws of the actuator. O As a result, standard screws can be used
0 instead of tamper-proof screws.

Articulated actuator for inaccurately closing doors

All NG series actuators are articulated, thereby allowing the actuator pin to be safely guided into the switch through the centring hole. As a result, the actuator and switch do not need to be precisely aligned during installation. In addition, the device can thereby be used on doors with a minimum actuation radius of 150 mm without the actuation pin needing to be angled.

Head and devices with variable orientation

The system can be variably configured by loosening the 4 screws on the head.
The key release device and the emergency release button can also be rotated and secured independently of one another in steps of 90°. The device can thus assume 16 different configurations.

Non-detachable head and release devices

The head and the release device can be rotated but cannot be detached from each other. This makes the switch more secure since the problem of incorrect assembly by the installer cannot occur; in addition, the risk of damage is lower (loss of small parts, penetration of dirt, etc.).

High protection degree

These devices are designed to be used in the toughest environmental conditions and they pass the IP67 immersion test acc. to EN 60529. They can therefore be used in all environments where maximum protection degree of the housing is required. Due to their special design, these devices are suitable for use in equipment subjected to cleaning with high pressure hot water jets. These devices meet the IP69K test requirements according to ISO 20653 (water jets with 100 bar and $80^{\circ} \mathrm{C}$).

External device monitoring

EDMOn request, the switch can be supplied with EDM function (External Device Monitoring). In this case, the switch itself checks the proper function of the devices connected to the safety outputs. These devices (usually relays or safety contactors) must send a feedback signal to the EDM input, which checks that the received signal is consistent with the state of the safety outputs.

Selection diagram

ATING PRINCIPLE

CONDUIT ENTRIES

Code structure

Code structure for actuator

Main features

- Actuation without contact, using RFID technology
- Digitally coded actuator
- Actuator holding force: 9750 N
- SIL 3 and PL e with a single device
- Optional integrated control devices
- Metal housing, three M20 conduit entries
- Protection degree up to IP67 and IP69K
- Versions with key release and emergency release button
- PL e also with series connection of up to 32 devices
- Signalling LED

Quality marks:

UL approval: TÜV SÜD approval: EAC approval:

E131787 Z10 150175157005 RU C-IT.АД35.В. 00454

In compliance with standards:

EN ISO 14119, EN 60947-5-3, EN 60947-1,
IEC 60204-1, EN 60204-1, EN ISO 12100,
IEC 60529, EN 60529, EN 61000-6-2, EN 61000-6-3, BG-GS-ET-19, IEC 61508-1, IEC 61508-2, IEC 61508-3, IEC 61508-4, SN 29500, EN ISO 13849-1, EN ISO 13849-2, EN 62061, EN 61326-1, EN 61326-3-1, EN 61326-3-2, ETSI 301 489-1, ETSI 301 489-3, ETSI 300 330-2, UL 508, CSA 22.2 No. 14

Compliance with the requirements of:
 Machinery Directive 2006/42/EC
 EMC Directive 2014/30/EU
 Directive 2014/53/EU - RED
 FCC Part 15

Connection terminals

Connection system:
PUSH-IN spring type Cross-section of rigid/flexible wires W . wire-end sleeve: $\quad \mathrm{min} .1 \times 0.34 \mathrm{~mm}^{2}(1$
\times AWG 22)
max. $1 \times 1.5 \mathrm{~mm}^{2}(1 \times$ AWG 16)
Wire cross-section with pre-insulated wire-end sleeve: $\mathrm{min} .1 \times 0.34 \mathrm{~mm}^{2}(1 \times$ AWG 22)
max. $1 \times 0.75 \mathrm{~mm}^{2}(1 \times$ AWG 18)
Cable stripping length (x):
 min.: 8 mm
max.: 12 mm

Technical data

Housing
Metal head and housing, baked powder coating.
Three threaded conduit entries:
Protection degree:
M20×1.5
Protection degree with control devices:
EN 60529
IP69K acc. to ISO 20653
IP65 acc. to EN 60529 with
cable gland of equal or
higher protection degree

General data
 SIL level (SIL CL):

Performance Level (PL):
Safety category:
Interlock with lock, no contact, coded: Level of coding acc. to EN ISO 14119:

Safety parameters:
MTTF $_{\mathrm{D}}$:
$\mathrm{PFH}_{\mathrm{D}}$: ${ }^{\text {D }}$
Service life:
Ambient temperature:
Max. actuation frequency
with actuator lock and release:
Mechanical endurance:
Max. actuation speed:
Min. actuation speed:
Maximum force before breakage $F_{1_{\text {max }}}$:
Max. holding force F_{zh}
Maximum clearance of locked actuator:
Released actuator extraction force:
Tightening torques for installation: see page
up to SIL 3 acc. to EN 62061 up to PL e acc. to EN ISO 13849-1
up to cat. 4 acc. to EN ISO 13849-1
type 4 acc. to EN ISO 14119
low with F30 actuator
High with F31 actuator
1883 years
8.07 E-10

High
20 years
20 years
$-20^{\circ} \mathrm{C} \ldots+50^{\circ} \mathrm{C}$
600 operating cycles/hour
1 million operating cycles
$0.5 \mathrm{~m} / \mathrm{s}$
$1 \mathrm{~mm} / \mathrm{s}$
9750 N acc. to EN ISO 14119
7500 N acc. to EN ISO 14119
4 mm
30 N
see page 313-324

Electrical data of IS1/IS2/I3/I4/I5/EDM inputs

Electrical data of $\mathbf{I S 1 / I S 2 / 1 3 / 1 4 / 1 5 / E D M}$ inputs	
Rated operating voltage $U_{e 1}:$	24 Vdc
Rated current consumption $I_{e 1}:$	5 mA

Electrical data of OS1/OS2 safety outputs
Rated operating voltage $\mathrm{U}_{\mathrm{e} 2}$:
24 Vdc
Output type:
PNP type OSSD
Maximum current per output $\mathrm{I}_{\mathrm{e} 2}$: $\quad 0.25 \mathrm{~A}$
Minimum current per output $\mathrm{I}_{\mathrm{m} 2}$: 0.5 mA
Thermal current $I_{\text {th2 }}: \quad 0.25 \mathrm{~A}$
Utilization category:
$\mathrm{DC} 13 ; U_{\mathrm{e} 2}=24 \mathrm{Vdc}, \mathrm{I}_{\mathrm{e} 2}=0.25 \mathrm{~A}$
Short circuit detection:
Overcurrent protection:
Internal self-resettable protection fuse:
Duration of the deactivation impulses at the
safety outputs:
1.1 A
< $300 \mu \mathrm{~s}$
Permissible maximum capacitance between output and ground: < 200 nF
Response time upon deactivation of IS1/IS2 inputs:
typically 7 ms , max. 15 ms
Response time upon actuator removal: typically 120 ms , max. 200 ms
Electrical data of O3/O4 signalling output
Rated operating voltage $\mathrm{U}_{\mathrm{e} 3}$: 24 Vdc
Output type: PNP
Maximum current per output $\mathrm{I}_{\mathrm{e} 3}$: 0.1 A
Utilization category: $\quad \mathrm{DC12} ; \mathrm{U}_{\mathrm{e} 3}=24 \mathrm{Vdc}, \mathrm{I}_{\mathrm{e} 3}=0.1 \mathrm{~A}$
Short circuit detection:
No
Overcurrent protection:
Yes
Internal self-resettable protection fuse: 1.1 A

RFID sensor data

Assured operating distance $S_{\text {ao }}$: 2 mm
Assured release distance $\mathrm{Sar}_{\mathrm{ar}}$: 4 mm (actuator not locked)
Rated operating distance S_{n} : $\quad 2.5 \mathrm{~mm}$
Repeat accuracy: $\leq 10 \% \mathrm{~s}_{\mathrm{n}}$
Differential travel: $\quad \leq 20 \% \mathrm{~s}_{n}$
Max. switching frequency: $\quad 1 \mathrm{~Hz}$

Power supply electrical data:

Rated operating voltage U SELV:
$24 \mathrm{Vdc} \pm 10 \%$
Operating current at U_{e} voltage:

- minimum:

40 mA

- with activated solenoid: 0.4 A
- with activated solenoid and all outputs
at maximum power:

Rated insulation voltage U
Rated impulse withstand voltage $U_{\text {imp }}$
External protection fuse:
Overvoltage category:
Electrical endurance:
Solenoid duty cycle:
Solenoid consumption:

32 Vdc
1.5 kV
1.5 A / 1.6 A type F
or equivalent device
III
1 million operating cycles
100% ED (continuous operation)
9 W max.

Features approved by UL

Utilization categories: $24 \mathrm{Vdc}, 0.25 \mathrm{~A}$ (resistive load).

Inputs supplied by remote class 2 source or limited voltage and limited energy

In compliance with standard: UL 508, CSA 22.2 No. 14

Features approved by TÜV SÜD

Protection degree: Ambient temperature: Storage temperature: PL, category: SIL:

In compliance with standards: 2006/42/EC, EN 60947-1/A1:2011 EN 60947-5-2/A1:2012, EN 60947-5-3:2013, EN ISO 14119:2013, EN 61508-1:2010 (SIL 3), EN 61508-2:2010 (SIL 3), EN 61508-3:2010 (SIL 3), EN 61508-4:2010 (SIL 3), EN 62061/A1:2013 (SIL CL 3), EN ISO 13489-1: 2008 (PL e, cat. 4)

Please contact our technical department for the list of approved products.

Selection table for switches with high level coded actuators

To order a product with EDM input replace number 4 with number 5 in the codes shown above. Example: NG 2D1D411A-F31 \rightarrow NG 2D1D511A-F31
Selection table for switches

To order a product with EDM input replace number 4 with number 5 in the codes shown above. Example: NG 2D1D411A \rightarrow NG 2D1D511A
Legend: $\overleftrightarrow{\checkmark}$ interlock with lock monitoring acc. to EN ISO 14119

Selection table for actuators

The use of RFID technology in NG series devices makes them suitable for several applications. Pizzato Elettrica offers two different versions of actuators, in order to best suit customers' specific needs.
Type F30 actuators are all encoded with the same code. This implies that a device associated with an actuator type F30 can be activated by other actuators type F30.
Type F31 actuators are always encoded with different codes. This implies that a device associated with an actuator type F31 can be activated only by a specific actuator. Another F31 type actuator will not be recognised by the device until a new association procedure is carried out (reprogramming). After reprogramming, the old actuator F31 will no longer be recognized.

Complete safety system

The use of complete and tested solutions guarantees the electrical compatibility between the NG series switches and the safety modules from Pizzato Elettrica, as well as high reliability. The switches have been tested with the modules listed in the adjacent table.

Switches	Compatible safety modules	Safety module output contacts		
		Instantaneous safety contacts	Delayed safety contacts	Signalling contacts
NG 2•••••••	CS AR-05••••	3NO	/	1NC
	CS AR-06••••	3NO	1	1NC
	CS AR-08••••	2NO	1	1
	CS AT-0•••••	2NO	2NO	1NC
	CS AT-1•••••	3NO	2NO	/
	CS MP••••••		page 255	
	CS MF••••••		page 283	

All NG series switches can be connected to safety modules or safety PLCs with OSSD inputs provided compatibility is ensured in advance.

Possibility of series connection of multiple switches for simplifying the wiring of the safety system, whereby only the outputs of the last switch are evaluated by a Pizzato Elettrica safety module (see table with compatible safety modules). Each NG series switch is provided with two signalling outputs which are activated when the guard is closed (O3) or locked (O4). Depending on the specific requirements of the system that has been realised, the signals of the signalling outputs can be evaluated by a PLC.

Internal block diagram

The diagram on the side represents the 6 logic functions which interact inside the device.
Function f0 is a basic function and includes the monitoring of the power supply as well as internal, cyclical tests. Function f1 monitors the status of the device inputs, whereas function $f 2$ monitors the presence of the actuator within the detection areas of the switch. Function $f 4$ checks the actuator lock condition.
Function $f 3$ is intended to activate or deactivate the safety outputs and check for any faults or short circuits in the outputs.
In the EDM versions, the $f 5$ function verifies the consistency of the EDM signal during safety output state changes. The safety-related function, which combines the subfunctions mentioned above, only activates the safety outputs for the switches in mode 1 if the input signals are correctly applied and the actuator pin is in the safe actuation area in the head and locked. The safety outputs for switches in mode 2 are activated if the input signals are correctly applied and the actuator pin is in the safe actuation area in the head. The status of each function is displayed by the corresponding LED (PWR, IN, OUT, ACT, LOCK, EDM), in such a way that the general device status becomes immediately obvious to the operator.

Actuation sequence in mode 1

The switch is supplied with power (PWR LED on, green), the IS1 and IS2 inputs are enabled (IN LED on, green), the OS1 and OS2 safety outputs are disabled (OUT LED off). The actuator is outside of the actuation zone (LED ACT off).

When the actuator is brought inside the safe actuation area (dark grey area), the switch turns on the ACT LED (green). In this position, the O3 signalling output (door-closed) is activated. The actuator is not locked (LOCK LED off).

The 14 input can be used to lock the actuator (LOCK LED on, green). The OS1 and OS2 safety outputs are enabled (OUT LED on, green). The O4 signalling output is activated at the same time. The safe actuation area is extended in order to allow greater play for the actuator.

The I4 input can be used to unlock the actuator (LOCK LED off). The switch disables the OS1 and OS2 safety outputs and turns off the OUT LED. The O4 signalling output is deactivated at the same time. The safe actuation area returns to the initial values

When the actuator leaves the actuation limit area, the device turns off the ACT LED and the O3 signalling output.

Actuation sequence in mode 2

In contrast to the above mode 2 description, the safety outputs OS1 and OS2 enable when the actuator is detected, and disable when the actuator is no longer detectable.

Operating states

PWR LED	$\underset{\text { LED }}{\text { IN }}$	$\begin{aligned} & \text { OUT } \\ & \text { LED } \end{aligned}$	$\begin{aligned} & \text { ACT } \\ & \text { LED } \end{aligned}$	$\begin{aligned} & \text { LOCK } \\ & \text { LED } \end{aligned}$	$\begin{aligned} & \text { EDM } \\ & \text { LED } \\ & \text { (a) } \end{aligned}$	Device state	Description
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	OFF	Device switched off.
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	POWER ON	Internal tests upon activation.
\bigcirc	\bigcirc	\bigcirc	*	*	\bigcirc	RUN	Safety inputs of the device not active.
-	-	*	*	*	*	RUN	Activation of safety inputs.
-	$\overline{0}$	\bigcirc	*	*	*	RUN	Safety inputs incoherence. Recommended action: check for presence and/or wiring of inputs.
\bigcirc	*	*	\bigcirc	*	*	RUN	Actuator in safe area. O3 signalling output active.
\bigcirc	*	*	\bigcirc	\bigcirc	\bigcirc	RUN	Actuator in safe area and locked; O 3 and O 4 outputs active.
-	-	-	-	\bigcirc	\bigcirc	RUN	Mode 1 Activation of safety inputs IS1, IS2. Actuator in safe area and locked. O3, O4, OS1 and OS2 outputs active.
-	\bigcirc	\bigcirc	\bigcirc	*	\bigcirc	RUN	Mode 2 Activation of safety inputs IS1, IS2. Actuator in safe area. O3, OS1 and OS2 outputs active.
	*	\cong	*	*	*	ERROR	Error on safety outputs. Recommended action: check for any short circuits between the outputs, outputs and ground or outputs and power supply, then restart the device.
	\bigcirc	\bigcirc	$\widehat{\widehat{0}}$	\bigcirc	\bigcirc	ERROR	Actuator detection error. Check the physical integrity of the device and, in case of failure, please replace the entire device. If undamaged, realign the actuator with the switch and restart the device.
-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	ERROR	Internal error. Recommended action: restart the device. If the failure persists, replace the device.
\bigcirc	*	\bigcirc	*	*	\bigcirc	RUN	EDM signal active (external relay off) ${ }^{\text {a }}$
\bigcirc	\bigcirc	\bigcirc	-	-	\bigcirc	RUN	EDM signal not active (external relay on) ${ }^{\text {a }}$
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\cong	ERROR	Error in the EDM ${ }^{\text {a function }}$

External device monitoring (EDM)

The NG 2D $\cdot \bullet 5 \cdot \bullet \cdot v e r s i o n$, in addition to maintaining the operating and safety characteristics of the NG series, allows control of forcibly guided NC contacts of contactors or relays controlled by the safety outputs of the switch itself. As an alternative to the relays or contactors you can use Pizzato Elettrica expansion modules CS ME-03.
See page 245. This check is carried out via the EDM input (External Device Monitoring as defined in EN 61496-1) of the switch.

This version, with the IS safety inputs, can be used at the end of a series of NG switches, up to a maximum number of 32 devices, while maintaining the maximum PL e safety level and acc. to EN ISO 13849-1 and SIL 3 safety level acc. to EN 62061. This solution allows you to dispense with the safety module connected to the last device in the chain.

Connection with safety modules

Connections with CS AR-08•••• safety modules
Input configuration with monitored start
2 channels / Category 4 / up to SIL 3 / PL e

Connections with CS AT- $0 \bullet \bullet \bullet \bullet /$ CS AT- $1 \bullet \bullet \bullet \bullet \bullet$ safety modules
Input configuration with monitored start 2 channels / Category 4 / up to SIL 3 / PL e

Connections with CS AR-05•••• / CS AR-06•••• safety modules Input configuration per manual start (CS AR-05••••) or monitored start (CS AR-06••••)
2 channels / Category 4 / up to SIL 3 / PL e

Connections with CS MF•••••, CS MP••••• safety modules The connections vary according to the program of the module Category 4/ up to SIL 3 / PL e

Application example on page 253.

Pin assignments (version with standard cover NG 2D••••1A)

Internal	M23 connector	M12 connector,	M12 connector,	M12 connector,	12-pole

Important: terminals $7,8,9,17,18$ of the internal terminal strip must not be used.
(a) Available in NG $2 \mathrm{D} \cdot \bullet 5 \cdot \bullet \bullet$ version only.
(b) For NG $2 \mathrm{D} \bullet \bullet 6 \bullet \bullet \bullet$: the output signals the fault condition of the device.
(c) Available for 8 -pole connector, not available for the end of a chain with Y connectors.

Switch NG 2D1D 0 - 1 A
Operating principle D, with sealable auxiliary
release device, without actuator

Switch NG 2D6D••1A

Operating principle D, with key release and emergency release button, without actuator

Switch NG 2D1E $\bullet \bullet$ 1A
Operating principle E,
without actuator

Switch NG 2D7D••1A
Operating principle D, with emergency release button, without actuator

Switch NG 2D5D $\bullet \bullet 1$ A
Operating principle D, with key release, without actuator

Switch NG 2D7E \bullet 1A
Operating principle E , with emergency release button, without actuator

Actuator VN NG-F3•

Terminal assignments (version with integrated control devices)

	Terminal no.	Connection			NG 2D••••1C NG 2D••••1D	$\begin{aligned} & \text { NG 2D••••1E } \\ & \text { NG 2D•••1F } \end{aligned}$	NG 2D••••1G NG 2D••••1H NG 2D••••1H
Internal terminal strip for switch	1	A2	Supply input 0 V				$\mathrm{A}^{\text {a }}$
	2	B2	O V auxiliary supply output				
	3	14	Solenoid activation input				A2 1 B2 1 14 3 3
	4	03	Signalling output, actuator inserted				
	5	04	Signalling output, actuator inserted and locked (b)			$03 \quad 4$	$03 \quad 4$
	6	13	and locked (b)			04	04
	10	A1	Supply input +24 Vdc			13 \%	13 - ${ }^{1}$
	11	B1	Auxiliary supply output +24 Vdc , (I 8 A max.)			${ }^{\text {A1 }}$ B1 ${ }^{13}$	${ }_{\text {A1 }} \mathrm{B1}_{1}-\frac{10}{11}$
	12	IS1 S	Safety input			151	IS1
-	13		Safety input			152	152
	14	15 E	EDM input (a)			15 年	15 14
	15	OS1	Safety output			OS1 ${ }^{15}$	OS1
	16	OS2	Safety output				OS2
Internal terminal strip integrated control devices	Important: terminals 7, 8, 9, 17, 18 of the internal terminal strip must not be used. (a) Available in NG $2 \mathrm{D} \bullet \bullet 5 \bullet \bullet \bullet$ version only. (b) For NG $2 D \bullet \bullet 6 \bullet \bullet \bullet$: the output signals the fault condition of the device.						- - ${ }^{19}$
	$\begin{aligned} & 19 \\ & 20 \end{aligned}$	Contact 1	Device 1	$\stackrel{(}{\square}$	$\square \square^{21}$	-	-
	$\begin{aligned} & 21 \\ & 22 \end{aligned}$	Contact 2			- $\begin{array}{r}\text {-23 } \\ \hline 24 \\ \hline\end{array}$		$\begin{array}{r}23 \\ \hline 24 \\ \hline 24 \\ \hline\end{array}$
	$\begin{aligned} & 23 \\ & 24 \end{aligned}$	Contact 1	Device 2	$\begin{aligned} & 00^{\circ} \\ & (1) \end{aligned}$	$\xrightarrow{-55}$	[$\begin{array}{r}\text { 25 } \\ \hline-26 \\ \hline\end{array}$	$\begin{array}{r}25 \\ \stackrel{25}{26} \\ \hline\end{array}$
	25 26	Contact 2		(2)		27	27
	27	Contact 1		(3)	入-289	28	28
	28 29					$\stackrel{\text { 29 }}{ }$	$\stackrel{\text { 29 }}{ }$
	30	Contact 2	Device 3		- 4	- 41	4. ${ }^{31}$
	31	Supply input $+24 \mathrm{Vdc} /$ LED device 1			- ${ }^{1}$	- ${ }^{1}$	* 4
	32	Supply input $+24 \mathrm{Vdc} /$ LED device 2			${ }^{1}$	- ${ }^{1}$	- ${ }^{\text {N-33 }}$
	33	Supply input $+24 \mathrm{Vdc} /$ LED device 3			3	- ${ }^{34}$	\bigcirc
	34	Supply input OV / LED					

Switch with integrated control devices and M23 connector, 19-pole

NG 2D••••1C-K603			
	Description	Actuator colour	Pin no.
	illuminated button, spring-return 1NO	white	
	illuminated button, spring-return 1NO	yellow	
	emergency button, not illuminated, with rotary release 2NC		

NG 2D••••1D-K603			
	Description	Actuator colour	Pin no.
	illuminated button, spring-return 1NO	\bigcirc white	
	button, not illuminated, spring-return 1NO	black	
	emergency button, not illuminated, with rotary release 2NC		$0-5-,-\left.7\right\|_{11} ^{10} 13$

NG 2D•••1E-K602
NG 2D••••1F-K602

NG 2D••••1H-K601

Description	Actuator colour	Pin no.
illuminated button, ipring-return 1NO	white	

Terminal assignments (version with integrated control devices)

Dimensional drawingssalues in the drawings are in mm

NG 2D $\bullet \bullet \bullet \bullet$ switch with integrated control devices

Available integrated devices

Other devices and contacts on request.
Please contact our technical office for the complete list of available products.

Technical data of the integrated control devices

General data

Protection degree:
Mechanical endurance: Spring-return button: Emergency button: Selector switch: Key selector switch:

IP65 acc. to EN 60529
1 million operating cycles 50,000 operating cycles 300,000 operating cycles 50,000 operating cycles 30,000 operating cycles including removal of the key

Actuating force:

Spring-return button:	4 N min	100 N max.
Emergency button:	20 N min	100 N max.
Selector switch:	0.1 Nm min	1.5 Nm max.
Key selector switch:	0.1 Nm min	1.3 Nm max.

Contact blocks of the control devices

Material of the contacts: silver contacts
Contact type:
Self-cleaning contacts with double interruption

Electrical data:

Thermal current $\mathrm{I}_{\text {th }}:$	1 A
Rated insulation voltage $\mathrm{U}_{\mathrm{i}}:$	$32 \mathrm{Vac} / \mathrm{dc}$
Rated impulse withstand voltage $\mathrm{U}_{\text {imp }}:$	1.5 kV
LED supply voltage:	$24 \mathrm{Vdc} \pm 15 \%$
LED supply current:	10 mA per LED

Utilization category of the contact block:
Direct current: DC13
U (V) 24
${ }^{\mathrm{I}_{\mathrm{e}}{ }^{e}(\mathrm{~A})} \quad 0.55$

In compliance with standards:

IEC 60947-5-1, IEC 60947-5-5, EN ISO 13850

\. Installation for safety applications:

Always connect the safety circuit to the NC contacts (normally closed contacts) as stated in standard EN 60947-5-1.

Extensions for release button

| Article | Description |
| :---: | :--- | :--- |
| VN NG-LP30 | Metal extension for rele-
 ase button. For max. wall
 thickness of 30 mm |
| VN NG-LP40 | Metal extension for rele-
 ase button. For max. wall
 thickness of 40 mm |
| VN NG-LP50 | Metal extension for rele-
 ase button. For max. wall
 thickness of 50 mm |
| VN NG-LP60 | Metal extension for rele-
 ase button. For max. wall
 thickness of 60 mm |
| VN NG-ERB | Red metal release button |

- Metal extensions can be combined with one another to achieve the desired length.
- Do not exceed an overall length of 500 mm between the release button and the switch.
Use medium-strength thread locker to secure the extensions.

Compatibility with P-KUBE 2 safety handles

Anywhere it is necessary to monitor access to dangerous areas of machines or systems, the P-KUBE 2 safety handles can be used on doors or guards.
Together with the NG series RFID safety switches with guard locking, these door handles form an integrated locking system for guards that enables access control to dangerous areas. This combination allows a robust system to be created completely out of metal which is compact and configurable. It contains an RFID safety switch with centring pin for the door and optional emergency release button, an adjustable handle with LOCK OUT device and command devices.
The same article can be used on hinged doors with left and right stop as well as with sliding doors.

Article Description	Article	Description	Article	Description
\square Safety door handle with AP G1A-111P LOCK OUT device, with 3 plates with multiple fastening options	AP G1A-011P	Safety door handle with LOCK OUT device, with 2 plates with multiple fastening options	AP G1Z-200P	Safety door handle with LOCK OUT device, with 1 plate

Adhesive labels for emergency release button

Polycarbonate yellow adhesive, rectangular, $300 \times 32 \mathrm{~mm}$, red inscription. It has to be fixed on the internal part of the jamb and helps finding the emergency release button.

Article
VF AP-A1AGR01
VF AP-A1AGR02
VF AP-A1AGR04
VF AP-A1AGR05
VF AP-A1AGR06
VF AP-A1AGR07
VF AP-A1AGR08
VF AP-A1AGR09

Description
PREMERE PER USCIRE
PUSHTO EXIT
ZUM ÖFFNEN DRÜCKEN
POUSSER POUR SORTIR
PULSAR PARA SALIR
НАЖАТЬ ДЛЯ ВЫХОДА
NACISNĄĆ ABY WYJŚĆ
PRESSIONAR PARA SAIR

Accessories

Items with code on green background are stock items

