Selection diagram

product option
accessory sold separately

Code structure

Housing		
FD	metal, one conduit entry	
FL	metal, three conduit entries	
FP	technopolymer, one conduit entry	
	Contact block	
$\mathbf{1 8}$	1NO+1NC, slow action	
$\mathbf{9}$	2NC, slow action	
$\mathbf{2 1}$	1NO+2NC, slow action	
$\mathbf{2 2}$	3NC, slow action	
$\mathbf{3 3}$	2NO+1NC, slow action	
$\mathbf{3 4}$	2NC, slow action	

Actuating head

78 Iongitudinal head
83 left transversal head (FD-FL housing only)
84 right transversal head (FD-FL housing only)

Actuating force
standard
E7 initial 20 N ...final 40 N (only head 78)
E9 initial 13 N ...final 75 N (only head 83-84)

Ambient temperature
$-25^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$ (standard)
T6 $-40^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$

Pre-installed cable glands or connectors
no cable gland or connector (standard)
K23 cable gland for cables $\varnothing 6 \ldots 12 \mathrm{~mm}$

K50 M12 metal connector, 5-pole

For the complete list of possible combinations please contact our technical department

Threaded conduit entry

M2 M20×1.5 (standard)
PG 13.5

Contact type

silver contacts (standard)
G silver contacts with $1 \mu \mathrm{~m}$ gold coating
Silver contacts, $2.5 \mu \mathrm{~m}$ gold coating (not for contact blocks 20, 21, 22, 33, 34)

Contact block
$331 \mathrm{NO}+1 \mathrm{NC}$, slow action
34 2NC, slow action

Actuating head
78 longitudinal head
83 left transversal head
84 right transversal head

Actuating force

standard
E7 initial 20 N ...final 40 N (only head 78)
E9 initial 13 N ...final 75 N (only head 83-84)

Ambient temperature

T6 $-40^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$

Pre-installed cable glands or connectors no cable gland (standard)

K23 cable gland for cables $\emptyset 6 \ldots 12 \mathrm{~mm}$
K50 M12 metal connector, 5-pole

Threaded conduit entry
M2 M20×1.5 (standard)
PG 11

Contact type

silver contacts (standard)
G silver contacts with $1 \mu \mathrm{~m}$ gold coating

Main features

- Metal or plastic housing, from one to three conduit entries
- Protection degree IP67
- In compliance with EN ISO 13850
- 7 contact blocks available
- Versions with vertical or horizontal actuation
- Versions with assembled M12 connector
- Versions with gold-plated silver contacts

Quality marks:

IMQ approval:	EG605
UL approval:	E131787
CCC approval:	2007010305230000
	(FD-FL-FC series)
	2007010305230014 (FP series)
EAC approval:	RU C-IT.АД35.B.00454

Technical data

Housing

FP series housing made of glass fibre reinforced technopolymer, self-extinguishing, shock-proof and with double insulation:
FD, FL and FC series: metal housing, baked powder coating.
FD, FP, FC series: one threaded conduit entry: M20×1.5 (standard)
FL series: three threaded conduit entries: M20×1.5 (standard)
Protection degree:
IP67 acc. to EN 60529 with cable gland of equal or higher protection degree

General data

For safety applications up to:
Safety parameters:
B_{100} :
Service life:
Ambient temperature:
Max. actuation frequency:
Mechanical endurance:
Max. actuation speed:
Min. actuation speed:
Tightening torques for installation:

SIL 3 acc. to EN 62061
PL e acc. to EN ISO 13849-1

2,000,000 for NC contacts
20 years
$-25^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$
1 cycle / 6 s
1 million operating cycles
$0.5 \mathrm{~m} / \mathrm{s}$
$1 \mathrm{~mm} / \mathrm{s}$
see page 313-324

Max. cable cross section (flexible copper strands)
Contact blocks 20, 21, 22, 33, 34:
Contact blocks 18, 9:
min. $1 \times 0.34 \mathrm{~mm}^{2}(1 \times$ AWG 22)
max. $2 \times 1.5 \mathrm{~mm}^{2}(2 \times$ AWG 16)
$\min .1 \times 0.5 \mathrm{~mm}^{2}(1 \times$ AWG 20$)$
max. $2 \times 2.5 \mathrm{~mm}^{2}(2 \times$ AWG 14)

In compliance with standards:

IEC 60947-5-1, EN 60947-5-1, EN 60947-1, IEC 60204-1, EN 60204-1, EN ISO 14119, EN ISO 12100, IEC 60529, EN 60529, EN ISO 13850, EN 418, UL 508, CSA 22.2
No. 14.
Approvals:
IEC 60947-5-1, UL 508, CSA 22.2 No.14, GB14048.5-2001.

Compliance with the requirements of:

Machinery Directive 2006/42/EC and EMC Directive 2004/122/EC.
Positive contact opening in conformity with standards:
IEC 60947-5-1, EN 60947-5-1.
© If not expressly indicated in this chapter, for correct installation and utilization of all articles see chapter utilization requirements from page 313 to page 324.

Electrical data			
	Thermal current $\left(I_{\text {th }}\right):$	Utilization category	
	Rated insulation voltage $\left(U_{i}\right):$	10 A	

Description

These rope-operated safety switches are installed on machines or conveyor belts and allow the machine to be brought to an emergency stop from any point and with any pull on the rope. This means significant cost savings for medium and large machines, since multiple emergency-stop buttons can be replaced with a single switch. They are equipped with a self-control function that constantly checks the correct function and signals a possible loosening or breaking of the rope through the opening of the contacts. These safety switches keep the contacts open after activation until the reset is performed, even if the rope is released.

Laser engraving

Head with variable orientation

For all switches, the head can be adjusted in 90° steps after removing the four fastening screws.

Extended temperature range

These devices are also available in a special version suitable for an ambient operating temperature range from $-40^{\circ} \mathrm{C}$ up to $+80^{\circ} \mathrm{C}$.
They can therefore be used for applications in cold stores, sterilisers and other equipment with low temperature environments. The special materials used to produce these versions retain their characteristics even under these conditions, thereby expanding the installation possibilities.

Indicator for rope adjustment

All switches are provided with a green ring that shows the area of the correct tightening of the rope. The installer has only to tighten the rope until the black indicator will be in the middle of the green area. With this setting, the switch can be reset by pulling the blue knob to close the electrical safety
contacts.
If the tension (or loosening) on the rope is so high that the black indicator exits the green area, the electrical safety contacts will open and the reset device will trigger.

Features approved by IMO

All devices are marked using a dedicated indelible laser system. These engravings are therefore suitable for extreme environments too. Thanks to this system that does not use labels, the loss of plate data is prevented and a greater resistance of the marking is achieved over time.

Protection degree IP67

These devices are designed to be used in the toughest environmental conditions and they pass the IP67 immersion test acc. to EN 60529. They can therefore be used in all environments where maximum protection degree of the housing is required.

Reduced actuating force

If the tension indicator is in the green area, the electrical safety contacts can be closed by pulling the blue knob. The reset status can be identified quickly by the green ring under the blue knob.

Features approved by UL

Utilization categories	O300 (69 VA, 125-250 Vdc)
	A600 (720 VA, 120-600 Vac)

Housing features type 1, 4 X "indoor use only", 12, 13
For all contact blocks use 60 or $75^{\circ} \mathrm{C}$ copper (Cu) conductor, rigid or flexible, wire size 12, 14 AWG. Tightening torque for terminal screws of 7.1 lb in (0.8 Nm).

In compliance with standard: UL 508, CSA 22.2 No. 14

Please contact our technical department for the list of approved products.

Dimensional drawings				All values in the drawings are in mm
Contact type: \mathbf{L} = slow action				
Contact block				
18 L	FP 1878-M2 Θ 1NO+1	FD 1878-M2 Θ 1NO+1NC	FD 1883-M2 Θ 1NO	FD 1884-M2 Θ 1 ${ }^{\text {NO}+1 \mathrm{NC}}$
$9 \square$	FP 978-M2 Θ 2NC	FD 978-M2 Θ 2NC	FD 983-M2 Θ 2NC	FD 984-M2 Θ 2NC
20 L	FP 2078-M2 \odot 1NO+2NC	FD 2078-M2 $\odot 1$ 1NO+2NC	FD 2083-M2 $\odot 1$ 1NO+2NC	FD 2084-M2 $\odot 1$ 1NO+2NC
21 L	FP 2178-M2 Θ 3NC	FD 2178-M2 Θ 3NC	FD 2183-M2 Θ 3NC	FD 2184-M2 Θ 3NC
22 L	FP 2278-M2 Θ 2NO+1NC	FD 2278-M2 Θ 2NO+1NC	FD 2283-M2 Θ 2NO+1NC	FD 2284-M2 Θ 2NO+1NC
33 L	FP 3378-M2 Θ 1NO+1NC	FD 3378-M2 Θ 1NO+1NC	FD 3383-M2 \bigodot 1NO+1NC	FD 3384-M2 Θ 1NO+1NC
$34 \square$	FP 3478-M2 Θ 2NC	FD 3478-M2 Θ 2NC	FD 3483-M2 Θ 2NC	FD 3484-M2 Θ 2NC
Actuating force	Intial $63 \mathrm{~N} . .$. final $83 \mathrm{~N}(90 \mathrm{~N} \Theta)$	Initial $63 \mathrm{~N} . .$. final $83 \mathrm{~N}(90 \mathrm{~N} \Theta)$	Initial $147 \mathrm{~N} . .$. final $235 \mathrm{~N}(250 \mathrm{~N} \Theta)$	Initial $147 \mathrm{~N} . .$. final $235 \mathrm{~N}(250 \mathrm{~N} \Theta)$
Travel diagrams	page 174-group 1	page 174-group 1	page 174 - group 2	page 174 - group 2

Contact block			
18 L	FL 1878-M2 Θ 1NO+1NC	FL 1883-M2 Θ 1NO+1NC	FL 1884-M2 Θ 1NO+1NC
9 L	FL 978-M2 Θ 2NC	FL 983-M2 Θ 2NC	FL 984-M2 Θ 2NC
20 L	FL 2078-M2 Θ 1NO+2NC	FL 2083-M2 Θ 1NO+2NC	FL 2084-M2 Θ 1NO+2NC
21 L	FL 2178-M2 Θ 3NC	FL 2183-M2 Θ 3NC	FL 2184-M2 Θ 3NC
22 L	FL 2278-M2 Θ 2NO+1NC	FL 2283-M2 Θ 2NO+1NC	FL 2284-M2 Θ 2NO+1NC
33 L	FL 3378-M2 Θ 1NO+1NC	FL 3383-M2 Θ 1NO+1NC	FL 3384-M2 Θ 1NO+1NC
34 L	FL 3478-M2 Θ 2NC	FL 3483-M2 Θ 2NC	FL 3484-M2 Θ 2NC
Actuating force	Initial $63 \mathrm{~N} . .$. final $83 \mathrm{~N}(90 \mathrm{~N} \Theta)$	Initial $147 \mathrm{~N} . .$. final $235 \mathrm{~N}(250 \mathrm{~N} \Theta)$	Initial $147 \mathrm{~N} . .$. final $235 \mathrm{~N}(250 \mathrm{~N} \Theta)$
Travel diagrams	page 174-group 1	page 174-group 2	page 174-group 2

How to read travel diagrams

Travel diagrams table

IMPORTANT:
In safety applications, actuate the switch at least up to the positive opening travel shown in the travel diagrams with symbol Θ. Actuate the switch at least with the positive opening force, reported in brackets below each article, next to the actuating force value.

Application examples and max. rope length for switches with longitudinal head

Application examples and max. rope length for switches with transversal head

Maximum spans

Maximum spans for switches with longitudinal head

The max. recommended spans are indicated in the diagram as a function of the temperature fluctuations (temperature differences) to which the switch may be exposed at the point of use For instance, with installation of type C and a temperature difference of $30^{\circ} \mathrm{C}$, the max. recommended rope length is 10 metres.

Important: The above data are guaranteed only using original rope and accessories. See page 185.

Adjustment of the switching point

Tighten the rope connected to the switch, until the end of the indicator (1) reaches about the middle of the green ring (2).

Pull the knob (3) in order to close the safety contacts inside the switch. Below the knob a green ring (4) will be disclosed.

