

Main features

- Technopolymer housing, two conduit entries
- Protection degree IP67
- 17 contact blocks available
- 43 actuators available
- Versions with stainless steel external parts
- Versions with M12 connector
- Versions with gold-plated silver contacts

Markings and quality marks:

IMQ approval:	
EG610	
CL approval:	E131787
CCC approval:	2007010305230013

Technical data

Housing

Housing made of fiber glass reinforced technopolymer, self-extinguishing, shock-proof and with double insulation:
Two knock-out threaded conduit entries Protection degree:

M20x1.5 (standard)
IP67 according to EN 60529 with cable gland having equal or higher protection degree

General data

Ambient temperature:
Max. actuation frequency:
Mechanical endurance:
Mounting position:
Safety parameters:
$\mathrm{B}_{10 \mathrm{~d}}$:
Mechanical interlock, not coded:
Tightening torques for installation:
see pages 235-246
(1) One operation cycle means two movements, one to close and one to open contacts, as defined in
EN 60947-5-1. EN 60947-5-1.

Cable cross section (flexible copper strands)

Contact blocks 20, 21, 22, 33, 34:
Contact block $5,6,7,9,10,11,12,13,14,15,16,18$:
Contact block 2:

In conformity with standards:

IEC 60947-5-1, EN 60947-5-1, EN 60947-1, IEC 60204-1, EN 60204-1, EN ISO 14119, EN ISO 12100, IEC 60529, EN 60529, UL 508, CSA 22.2 No. 14

Approvals:

IEC 60947-5-1, UL 508, CSA 22.2 No.14, GB14048.5-2001.

In conformity with the requirements of:

Low Voltage Directive 2006/95/EC, Machinery Directive 2006/42/EC and EMC Directive 2004/108/EC.
Positive contact opening in conformity with standards:
IEC 60947-5-1, EN 60947-5-1.

Installation for safety applications:
Use only switches marked with the symbol Θ aside the product code. Always connect the safety circuit to the NC contacts (normally closed contacts: 11-12, $21-22$ or 31-32) as stated in standard EN 60947-5-1, encl. K, par. 2. Actuate the switch at least up to the positive opening travel shown in the travel diagrams on page 240 . Operate the switch at least with the positive opening force, indicated between brackets below each article, aside the minimum force value.
§ If not expressly indicated in this chapter, for correct installation and utilization of all articles see chapter utilization requirements from page 235 to page 246.

Electrical data			Utilization category			
	Thermal current (Ith): Rated insulation voltage (Ui):	$10 \mathrm{~A}$ 500 Vac 600 Vdc 400 Vac 500 Vdc (contact blocks 2, 11, 12, 20, 21, 22, 33, 34) 6 kV 4 kV (contact blocks 20, 21, 22, 33, 34) 1000 A according to EN 60947-5-1 type aM fuse 10 A 500 V 3	Alternating current: AC15 ($50 \div 60 \mathrm{~Hz}$)			
			$\mathrm{Ue}(\mathrm{V})$	250	400	500
			le (A)	6	4	1
	Rated impulse withstand voltage $\left(\mathrm{U}_{\mathrm{imp}}\right)$: Conditional short circuit current: Protection against short circuits: Pollution degree:		Direct current: DC13			
			$\mathrm{Ue}(\mathrm{V})$	24	125	250
			le (A)	6	1.1	0.4
	Thermal current (lth): Rated insulation voltage (Ui): Protection against short circuits: Pollution degree:	```4 A 250 Vac 300 Vdc fuse 4 A 500 V type gG 3```	Alternating current: AC15 ($50 \div 60 \mathrm{~Hz}$)			
			$\mathrm{Ue}(\mathrm{V})$	24	120	250
			le (A)	4	4	4
			Direct c	ent: D		
			$\mathrm{Ue}(\mathrm{V})$	24	125	250
			le (A)	4	1.1	0.4
	Thermal current (lth): Rated insulation voltage (Ui): Protection against short circuits: Pollution degree:	```2A 30 Vac 36 Vdc fuse 2 A 500 V type gG 3```	Alternating current: AC15 ($50 \div 60 \mathrm{~Hz}$)			
			le (A)	2		
			Direct c	ent: D		
			Ue (V)	24		
			le (A)	2		

Characteristics approved by IMQ

Rated insulation voltage (Ui):

500 Vac

400 Vac (for contact blocks 2, 11, 12, 20, 21,
22, 33, 34)
Conventional free air thermal current (lth): 10
Protection against short circuits: t
ype aM fuse 10 A 500 V
Rated impulse withstand voltage ($\mathrm{U}_{\mathrm{imp}}$): 6 kV
4 kV (for contact blocks $20,21,22,33,34$)
Protection degree of the housing: IP67
MV terminals (screw terminals)
Pollution degree 3
Utilization category: AC15
Operating voltage (Ue): $400 \mathrm{Vac}(50 \mathrm{~Hz})$
Operating current (le): 3 A
Forms of the contact element: $\mathrm{Za}, \mathrm{Zb}, \mathrm{Za}+\mathrm{Za}, \mathrm{Y}+\mathrm{Y}, \mathrm{X}+\mathrm{X}, \mathrm{Y}+\mathrm{Y}+\mathrm{X}, \mathrm{Y}+\mathrm{Y}+\mathrm{Y}, \mathrm{Y}+\mathrm{X}+\mathrm{X}$
Positive opening of contacts on contact blocks $5,6,7,9,11,13,14,16,18,20$,
21, 22, 33, 34
In conformity with standards: EN 60947-1, EN 60947-5-1+ A1:2009, fundamental requirements of the Low Voltage Directive 2006/95/EC.

Please contact our technical service for the list of approved products

Characteristics approved by UL

Utilization categories Q300 (69 VA, 125 ... 250 Vdc)

$$
\text { A600 (720 VA, } 120 \text {... } 600 \mathrm{Vac} \text {) }
$$

Data of housing type $1,4 \mathrm{X}$ "indoor use only", 12,13
For all contact blocks except 2 and 3 use 60 or $75^{\circ} \mathrm{C}$ copper (Cu) conductor, rigid or flexible, wire size AWG 12/14. Terminal tightening torque of 7.1 lb in (0.8 Nm).

For contact blocks 2 and 3 use 60 or $75^{\circ} \mathrm{C}$ copper (Cu) conductor, rigid or flexible, wire size AWG 14. Terminal tightening torque of 12 lb in (1.4 Nm).

In conformity with standard: UL 508, CSA 22.2 No. 14

Please contact our technical service for the list of approved products.

Connection diagram for M12 connectors

Contact block 2 $1 \mathrm{NO}-1 \mathrm{NC}+1 \mathrm{NO}-1 \mathrm{NC}$	Contact block 5 1NO+1NC	$\begin{gathered} \text { Contact block } 6 \\ 1 \mathrm{NO}+1 \mathrm{NC} \end{gathered}$	$\begin{aligned} & \text { Contact block } 7 \\ & 1 \mathrm{NO}+1 \mathrm{NC} \end{aligned}$	$\begin{gathered} \text { Contact block } 9 \\ \text { 2NC } \end{gathered}$	$\begin{gathered} \text { Contact block } 10 \\ 2 \mathrm{NO} \end{gathered}$	Contact block 11 2NC	$\begin{gathered} \text { Contact block } 12 \\ 2 \mathrm{NO} \end{gathered}$	Contact block 13 2NC
M12 connector, 8 poles	M12 connector, 4 poles							
$\begin{array}{cc}\text { Contacts } & \text { Pin no. } \\ \text { NO } & 3-4\end{array}$	Contacts Pin no. NC 1-2	Contacts Pin no. $\text { NC } \quad 1-2$	Contacts Pin no. NC 1-2	Contacts Pin no. $\text { NC } \quad 1-2$	$\begin{array}{cc}\text { Contacts } & \text { Pin no. } \\ \text { NO } & 1-2\end{array}$	Contacts Pin no. NC $\quad 1-2$	Contacts Pin no. $\text { NO } \quad 1-2$	Contacts Pin no. NC (19) 1-2
NC 5-6	NO 3-4	NO 3-4	NO 3-4	NC 3-4	NO 3-4	NC 3-4	NO 3-4	NC (20) 3 -4
NC 7-8								
NO 1-2								
Contact block 14 2NC	Contact block 15 2NO	Contact block 16 2NC	Contact block 18 $1 \mathrm{NO}+1 \mathrm{NC}$	$\text { Contact block } 20$ $2 \mathrm{NC}+1 \mathrm{NO}$	$\begin{gathered} \text { Contact block } 21 \\ \text { 3NC } \end{gathered}$	Contact block 22 $1 \mathrm{NC}+2 \mathrm{NO}$	Contact block 33 $1 \mathrm{NC}+1 \mathrm{NO}$	Contact block 34 2NC
M12 connector, 4 poles	M12 connector, 8 poles	M12 connector, 8 poles	M12 connector, 8 poles	M12 connector, 4 poles	M12 connector, 4 poles			
Contacts Pin no. NC (1 ${ }^{\circ}$) $1-2$	Contacts Pin no. $N O\left(1^{\circ}\right) \quad 1-2$	Contacts Pin no. NC, lever at the right $1-2$	Contacts Pin no. NC $\quad 1-2$	Contacts Pin no. NC $\quad 3-4$	Contacts Pin no. NC $\quad 3-4$	Contacts Pin no NC \quad 3-4	Contacts Pin no. NC 1-2	Contacts Pin no. NC $\quad 1-2$
NC (20) 3 -4	NO (2) ${ }^{\circ}$ 3-4	$N C$, lever to the left 3-4	NO 3-4	NC 5-6	NC 5-6	NO 5-6	NO 3-4	NC $\quad 3-4$
				NO 7-8	NC 7-8	NO 7-8		

M12 connector, 4 poles

Contacts	Pin no.
+	1
-	3
NC	2
NO	4

