

Powerex, Inc., 173 Pavilion Lane, Youngwood, Pennsylvania 15697 (724) 925-7272 www.pwrx.com

IGBT Gate Driver + DC/DC Converter

Circuit Diagram

Dimensions	Inches	Millimeters		
Α	3.46 Max.	88.0 Max.		
В	1.67 Max.	42.5 Max.		
С	0.67 Max.	17.0 Max.		
D	0.31 Max.	8.0 Max.		
E	0.1	2.54		
F	0.45 Max.	11.5 Max.		
G	0.24 Max.	6.0 Max.		
Н	0.03±0.004	0.75±0.1		
J	0.14±0.04	3.5±1.0		
K	0.028 Max.	0.7 Max.		

Description:

VLA554-01R is a hybrid integrated circuit designed for driving n-channel IGBT modules in any gate-amplifier application. This device contains a fully isolated DC-DC converter designed to be used with a fiber optic interface for control signal input and fault signal output. The gate driver provides an over-current protection function based on desaturation detection.

Features:

Built in Isolated DC-DC
Converter for Gate Drive
SIP Outline Allows More Space
Built in Short Circuit Protection
with a pin for Fault Output
Built in Collector Clamp Circuit
Variable Fall Time on Short-
Circuit Protection
Electrical Isolation Voltage
4000 V _{rms} (for 1 Minute)
CMOS Compatible Input
Interface
Interfaces with Fiber Optic
Connector for Isolation of
Input Signal
. •

Applications:

☐ To Drive IGBT Modules for General Industrial Use.

Recommended IGBT Modules:

V_{CES} = 1200V Series up to 3600A Class V_{CES} = 1700V Series up to 3600A Class

VLA554-01R IGBT Gate Driver + DC/DC Converter

Absolute Maximum Ratings, $T_a = 25^{\circ}\text{C}$ unless otherwise specified

Characteristics	Symbol	Rating	Units
Supply Voltage (DC)	V_{D}	-1 ~ 16.5	Volts
Output Voltage ("H" Output Voltage)	V _O	V _{CC}	Volts
Input Current - Pulse(PW 10msec, Duty Cycle 50%, Applied Pin 1,2)	I _{IN(PULSE)}	4	Amperes
Output Current (Pulse Width 3µs)	I _{OHP}	-24	Amperes
	l _{OLP}	24	Amperes
Isolation Voltage (Sine Wave Voltage 60Hz, for 1 min., R.H. <60%)	V _{iso}	4000	V _{rms}
Case Temperature (Surface Temperature)	T _C	100	°C
Operating Temperature (No Condensation Allowable)	T _{opr}	-30 ~ 70	°C
Storage Temperature (No Condensation Allowable)	T _{stg}	-40 ~ 100*1	°C
Fault Output Current (Applied at Pin 28)	I _{FO}	20	mA
Input Voltage to Pin 30 (Applied at Pin 30)	V _{R30}	60	Volts
Gate Drive Current (Gate Average Current)	I _{drive}	210*2	mA

Electrical Characteristics, T_a = 25°C, V_D = 15V, R_G = 1 Ω , C_L = 1.6 μ F, f = 3kHz unless otherwise specified

Characteristics	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Supply Voltage	V _D	Recommended Range	14.2	15	15.8	Volts
Switching Frequency	f	Recommended Range	_	_	10	kHz
Gate Resistance	R _G	Recommended Range	0.33	_	_	Ω
Gate Positive Supply Voltage	V _{CC}		15.2	16.5	17.5	Volts
Gate Negative Supply Voltage	V _{EE}		-6	-8	-11.5	Volts
Gate Supply Efficiency	η	Load Current = 210mA,	60	72	_	%
		$\eta = (V_{CC} + V_{EE}) \times 0.21 / (15 \times I_D) \times 100$				
"H" Output Voltage	V _{OH}	10kΩ Connected Between Pins 23-20	14	15.3	16.5	Volts
"L" Output Voltage	V _{OL}	10kΩ Connected Between Pins 23-20	-5.5	-7	-11	Volts
"L-H" Propagation Time	t _{PLH}	I _{IH} = 30mA*3, Propagation Time from Pin 15	0.3	0.5	1.0	μs
"L-H" Rise Time	t _r	I _{IH} = 30mA*3	_	0.6	1.2	μs
"H-L" Propagation Time	t _{PHL}	I _{IH} = 30mA*3, Propagation Time from Pin 15	0.2	0.4	1.0	μs
"H-L" Fall Time	t _f	I _{IH} = 30mA*3	_	0.3	1.2	μs
Timer	t _{timer}	Between Start and Cancel	1	_	2	ms
		(Under Input Sign "OFF")				
Fault Output Current	I _{FO}	Applied Pin 28, $R = 2.4k\Omega$	_	10	_	mA
Controlled Time Detect Short Circuit 1	t _{trip1}	Pin 30: 15V and more, Pin 29: Open	_	3.5	_	μs
Controlled Time Detect Short Circuit 2*4	t _{trip2}	Pin 30: 15V and more, Pins 29-21, 22: 10pF	_	3.9	_	μs
		(Connective Capacitance)				
SC Detect Voltage	V _{SC}	Collector Voltage of IGBT	15	_	_	Volts

^{*1} Differs from H/C condition.

^{*2} Refer to I_{drive}-T_a characteristics.
*3 I_H is the current which flows through the LED in the optical link of the input interface. Refer to the Measurement Circuit schematic on page 3.
*4 Length of wiring of capacitor controlled time detect short-circuit is within 5cm from Pins 21, 22 and 29 coming and going.

VLA554-01R IGBT Gate Driver + DC/DC Converter

Definition of Characteristics

(Pin 15) (Pin 23, 24) (Pin 23, 24) (Pin 24, 24) (Pin 25, 24) (Pin 26, 24) (Pin 27, 24) (Pin 28, 24)

OPERATION OF SHORT CIRCUIT PROTECTION

Measurement Circuit

MEASUREMENT CONDITIONS

 $\begin{array}{ll} T_a &= 25^{\circ}C & SW1:ON \rightarrow Switching\ Mode \\ V_D &= 15V & SW1:OFF \rightarrow Short\ Circuit\ Protect\ Mode \\ R_G &= 1\Omega & SW2:OFF \rightarrow Measurement\ of\ t_{trip1} \\ C_G &= 1.6\mu F & SW2:ON \rightarrow Measurement\ of\ t_{trip2} \end{array}$

VLA554-01R IGBT Gate Driver + DC/DC Converter

Application Example

 $V_D = 15V \pm 5\%$

FOT1,2: HFBR-1532Z (AVAGO) etc.

FOR1,2: HFBR-2532Z (AVAGO) etc.

C_{trip}: Depends on R_G
C_S: Depends on Surge Voltage

D_{Z1}: 30V, 0.5W~1W

D_{Z2}: 18V, Bidirectional

D₁: Fast Recovery Diode (t_{rr}: 200ns max.)

RP1H (SanKen) etc.

 $C_1, C_2: 470\mu F, 35V \text{ (Low Impedance)}$

 $D_{2\sim4}$: SBD $V_{RM} = 60V$, $IF_{SM} > 60A$ Class

 R_1 : 1 Ω , 1W Class

: 10Ω, 1/4W Class

 $D_{Z3\sim6}^{-}$: Vpn < Total V_Z < V_{CES} of IGBT Rough guide of total V_Z is as follows:

For V_{CES} 1200V Series → 900~1000V

For V_{CES} 1700V Series > 1300-1400V It depends on Vpn, I_C(max), R_G, snubber circuit inductance of power main circuit, and

kind of main condenser.

- Decoupling capacitors should be located as close as possible to the Hybrid IC pins.
- 2. The gate circuit path should be kept as short as possible to minimize influence of switching noise.
- 3. D₁ requires approximately the same blocking voltage as the IGBT modules.
- 4. When recovery current flows in D₁, Pin 30 sees high voltage. A zener diode between Pin 21 and Pin 30 is necessary as shown in above diagram.
- 5. To decrease the speed of output fall time (reverse bias) when protection circuit is operating, connect C_S between Pin 21 and Pin 27.
- 6. If the short-circuit protection circuit is not used, please connect a 4.7k ohm resistor between Pin 30 and Pin 20. (D $_1$ and D $_{Z1}$ are not required.)
- 7. If the collector clamp circuit is activated repeatedly, it may be destroyed as a result of overheating. For this reason, power dissipation of the zener diode should be determined by testing in the actual inverter.

VLA554-01R IGBT Gate Driver + DC/DC Converter

Operation of Protection Circuit

- When an "ON" input signal is applied for a period longer than Ttrip
 and the collector voltage is high, the hybrid IC will recognize the
 condition as a short-circuit and immediately reduce the gate voltage.
 It will also produce a low voltage fault signal at the respective Pin 28
 alerting that the protection circuit is in operation.
- 2. The protection circuit will reset if an "OFF" input signal is applied and the minimum $1\sim2ms$ shutdown time has passed. "OFF" signal must be $15\mu s$ or more.
- 3. The controlled time to detect a short-circuit (Ttrip) should be set so that the IGBT can be fully turned "ON" before a short-circuit condition can be detected. It is possible to adjust Ttrip by connecting a capacitor (Ctrip) between Pins 21, 22 and 29.
- 4. When the short-circuit protection is activated, the soft gate shutdown circuit reduces the collector surge voltage on the IGBT. The gate shut down speed can be slowed even more by adding a capacitor to the CS terminal (between Pins 21, 27).

Adjustment of Output Fall Time

Operation Flow on Detecting Short Circuit

NOTE: Output voltage with protection circuit operating is about -IVEEI + 2V

06/16 Rev. 0 5

VLA554-01R IGBT Gate Driver + DC/DC Converter

Capacity for Power Supply on Input Side

This product has an isolated DC-DC converter built in for gate drive. Follow these three steps to determine the proper capacity of the power supply on the input side.

1. Calculate the average gate current.

$$I_{drive} = (Q1 + |Q2|) \times F$$

I_{drive}: Gate average current

Q1 : Gate charge at +15V (read from IGBT datasheet)
Q2 : Gate charge at -7V (read from IGBT datasheet)

f: Switching frequency of IGBT

2. Required current from performance curve.

If the result of the calculation for I_{drive} is 100mA, I_{D} is about 270mA as shown on the graph.

ID: Consumption current of DC-DC converter in this HIC

GATE CHARGE CHARACTERISTICS OF IGBT

3. Calculate the margin

$$I_{out} = I_D x (1 + margin)$$

Iout: Output current of input power supply

Margin: 0.4

If the result of I_D is 270mA, the power supply spec is:

Output voltage: 15V

Output current: greater than 350mA

I_D - I_O CHARACTERISTICS (TYPICAL)

Timing Chart

6 06/16 Rev. 0

VLA554-01R IGBT Gate Driver + DC/DC Converter

t_{PLH}, t_{PHL} - T_a CHARACTERISTICS (TYPICAL)

V_{CC} , $|V_{EE}|$ - I_{O} CHARACTERISTICS (TYPICAL)

t_{trip}-T_a CHARACTERISTICS (TYPICAL)

VLA554-01R IGBT Gate Driver + DC/DC Converter

06/16 Rev. 0

EFFICIENCY, η, (%)

VLA554-01R IGBT Gate Driver + DC/DC Converter

η-V_D CHARACTERISTICS (TYPICAL)

EFFICIENCY, η, (%)