Sorry

No Image available

Redundancy Power Supply

- AC 100-240V Wide-range Input
- Width only 39 mm
- Built-in Decoupling Mosfet for $1+1$ and $n+1$ Redundancy
- Efficiency up to 94.7%
- 20\% Output Power Reserves
- Safe Hiccup PLUS Overload Mode
- Easy Fuse Breaking - 3 times nominal current for 12 ms
- Active Power Factor Correction (PFC)
- Minimal Inrush Current Surge
- Full Power Between $-25^{\circ} \mathrm{C}$ and $+60^{\circ} \mathrm{C}$
- DC-OK Relay Contact
- Current Sharing Feature Included
- 3 Year Warranty

General Description

The Dimension CP-Series are cost optimized power supplies without compromising quality, reliability and performance. The most outstanding features of the CP10.241-R1/-R2/-R3 units are the high efficiency, electronic inrush current limitation, active PFC, wide operational temperature range and the extraordinary small size. The units include a decoupling MOSFET for building $1+1$ or $n+1$ redundant power supply systems.
These redundancy power supplies come with three connection terminal options; screw terminals, springclamp terminals or plug connector terminals which allows replacement on an active application.
CP10.242-R2 version feature an enhanced DC input voltage range.
With high immunity to transients and power surges, low electromagnetic emission, a DC-OK signal contact for remote monitoring, and a large international approval package, makes this unit suitable for nearly every application.

Order Numbers

Power Supplies
CP10.241-R1
With quick-connect spring-clamp terminals
CP10.241-R2 With hot swappable plug
CP10.241-R3 With screw terminals
CP10.242-R2 Enhanced DC-Input
Mechanical Accessory
ZM4.WALL Wall/panel mount bracket
ZM12.SIDE Side mount bracket

Short-form Data

Output voltage	DC 24 V	0\%/+6\%
Adjustment range	-	
Output current	12A	Below $+45^{\circ} \mathrm{C}$ ambient
	10A	At $+60^{\circ} \mathrm{C}$ ambient
	7.5A	At $+70^{\circ} \mathrm{C}$ ambient
	Derate linearely between $+45^{\circ} \mathrm{C}$ and $+70^{\circ} \mathrm{C}$	
AC Input voltage	AC 100-240V	-15\%/+10\%
Mains frequency	$50-60 \mathrm{~Hz}$	$\pm 6 \%$
AC Input current	2.17 / 1.14A	At 120 / 230Vac
Power factor	0.99 / 0.97	At 120 / 230Vac
Input voltage DC	DC 110-150V ${ }^{ \pm 20 \%}$	For CP10.241-Rx
	DC 110-300V ${ }^{ \pm 20 \%}$	For CP10.242-R2
Input current DC	2.35A / 0.84A	At $110 / 300 \mathrm{Vdc}$
AC Inrush current	6 / 9Apk	At $120 / 230 \mathrm{Vac}$
Efficiency	93.0 / 94.7\%	At 120 / 230Vac
Losses	18.1 / 13.4W	At $120 / 230 \mathrm{Vac}$
Hold-up time	$37 / 37 \mathrm{~ms}$	At $120 / 230 \mathrm{Vac}$
Temperature range	$-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	
Size (wxh x d)	$39 \times 124 \times 117 \mathrm{~mm}$	Without DIN-rail and plug connectors

Weight $\quad 600 \mathrm{~g} / 1.32 \mathrm{lb}$

MARKINGS

For details or a complete approval list see section 20.

INDEX

Page	Page
1. Intended Use ... 4	20. Approvals ... 21
2. Installation Requirements............................... 4	21. Other Fulfilled Standards 21
3. AC-Input.. 5	22. Physical Dimensions and Weight................... 22
4. DC-Input... 6	23. Accessories ... 23
5. Input Inrush Current 7	23.1. ZM4.WALL - Wall/Panel Mount Bracket . 23
6. Output .. 8	23.2. ZM12.SIDE - Side Mounting Bracket....... 24
7. Hold-up Time.. 9	24. Application Notes....................................... 25
8. DC-OK Relay Contact 10	24.1. Peak Current Capability 25
9. Efficiency and Power Losses.......................... 11	24.2. Adjusting the Output Voltage 26
10. Lifetime Expectancy 12	24.3. Charging of Batteries 27
11. MTBF ... 12	24.4. Output Circuit Breakers......................... 27
12. Functional Diagram..................................... 13	24.5. Series Operation 28
13. Terminals and Wiring................................... 14	24.6. Parallel Use to Increase Output Power.... 28
14. Replacing Units while the System is Running .. 15	24.7. Parallel Use for Redundancy 29
15. Front Side and User Elements........................ 16	24.8. Operation on Two Phases 30
16. EMC... 17	24.9. Use in a Tightly Sealed Enclosure 30
17. Environment... 18	24.10. Mounting Orientations 31
18. Safety and Protection Features 19	
19. Dielectric Strength 20	
The information given in this document is correct to the best of our knowledge and experience at the time of publication. If not expressly agreed otherwise, this information does not represent a warranty in the legal sense of the word. As the state of our knowledge and experience is constantly changing, the information in this data sheet is subject to revision. We therefore kindly ask you to always use the latest issue of this document.	
No part of this document may be reproduced or utiliz	mithout our prior permission in writing.

Terminology and Abreviations

PE and ${ }^{()}$symbol
Earth, Ground
T.B.D.

AC 230V

230Vac
$\mathbf{5 0 H z}$ vs. 60 Hz
may
shall
should
1+1 Redundancy

$\mathbf{N + 1}$ Redundancy

PE is the abbreviation for Protective Earth and has the same meaning as the symbol $\mathcal{\Theta}$. This document uses the term "earth" which is the same as the U.S. term "ground". To be defined, value or description will follow later.
A figure displayed with the AC or DC before the value represents a nominal voltage with standard tolerances (usually $\pm 15 \%$) included. E.g.: DC 12 V describes a 12 V battery disregarding whether it is full (13.7 V) or flat (10 V) A figure with the unit (Vac) at the end is a momentary figure without any additional tolerances included.
As long as not otherwise stated, AC 230 V parameters are valid at 50 Hz mains frequency.
A key word indicating flexibility of choice with no implied preference.
A key word indicating a mandatory requirement.
A key word indicating flexibility of choice with a strongly preferred implementation.
Use of two identical power supplies in parallel to provide continued operation following most failures in a single power supply. The two power supply outputs should be isolated from each other by utilizing diodes or other switching arrangements. E.g. two 10A power supplies are needed to achieve a 10A redundant system.
Use of three or more identical power supplies in parallel to provide continued operation following most failures in a single power supply. All power supply outputs should be isolated from each other by utilizing diodes or other switching arrangements.

E.g.: To achieve a 40A redundant system, five 10A power supplies are needed in a N+1 redundant system.

1. Intended Use

This device is designed for installation in an enclosure and is intended for the general professional use such as in industrial control, office, communication, and instrumentation equipment.
Do not use this power supply in equipment, where malfunction may cause severe personal injury or threaten human life.

2. INSTALLATION REQUIREMENTS

WARNING Risk of electrical shock, fire, personal injury or death.

- Do not use the power supply without proper grounding (Protective Earth). Use the terminal on the input block for earth connection and not one of the screws on the housing.
- Turn power off before working on the device. Protect against inadvertent re-powering.
- Make sure that the wiring is correct by following all local and national codes.
- Do not modify or repair the unit.
- Do not open the unit as high voltages are present inside.
- Use caution to prevent any foreign objects from entering the housing.
- Do not use in wet locations or in areas where moisture or condensation can be expected.
- Do not touch during power-on, and immediately after power-off. Hot surfaces may cause burns.

Obey the following installation requirements:

- This device may only be installed and put into operation by qualified personnel.
- Install the device in an enclosure providing protection against electrical, mechanical and fire hazards.
- The device is designed for use in pollution degree 2 areas in controlled environments.
- The enclosure of the device provides a degree of protection of IP20 according to IEC 60529.
- Mount the unit on a DIN-rail so that the input terminals are located on the bottom of the unit. For other mounting orientations see de-rating requirements in this document.
- The device is designed for convection cooling and does not require an external fan. Do not obstruct airflow and do not cover ventilation grid (e.g. cable conduits) by more than 15% !
- Keep the following installation clearances: 40 mm on top, 20 mm on the bottom, 5 mm on the left and right sides are recommended when the device is loaded permanently with more than 50% of the rated power. Increase this clearance to 15 mm in case the adjacent device is a heat source (Example: another power supply).
- Make sure that the wiring is correct by following all local and national codes. Use appropriate copper cables that are designed for a minimum operating temperature of $60^{\circ} \mathrm{C}$ for ambient temperatures up to $+45^{\circ} \mathrm{C}, 75^{\circ} \mathrm{C}$ for ambient temperatures up to $+60^{\circ} \mathrm{C}$ and $90^{\circ} \mathrm{C}$ for ambient temperatures up to $+70^{\circ} \mathrm{C}$. Ensure that all strands of a stranded wire enter the terminal connection. Check also local codes and local requirements. In some countries local regulations might apply.
- This device does not contain serviceable parts. The tripping of an internal fuse is caused by an internal defect. If damage or malfunction should occur during installation or operation, immediately turn power off and send the device to the factory for inspection.
- The device is designed, tested and approved for branch circuits up to up to 30 A (UL) or 32 A (IEC) without additional protection device. If an external fuse is utilized, do not use circuit breakers smaller than 10A B- or C-Characteristic to avoid a nuisance tripping of the circuit breaker.
- A disconnecting means shall be provided for the input of the power supply.

3. AC-INPUT

The device is suitable to be supplied from TN-, TT- and IT mains networks with AC voltage. For suitable DC supply voltages see chapter 4.

AC input	Nom.	AC 100-240V	
AC input range	Min.	$85-264 \mathrm{Vac}$	Continuous operation
	Min.	$264-300 \mathrm{Vac}$	For maximal 500ms (occasional)
Allowed voltage L or N to earth	Max.	300 Vac	Continuous, according to IEC 60664-1
Input frequency	Nom.	$50-60 \mathrm{~Hz}$	$\pm 6 \%$
Turn-on voltage	Typ.	80 Vac	Steady-state value, see Fig. 3-1
Shut-down voltage	Typ.	70 Vac	Steady-state value, see Fig. 3-1
	Typ.	55 Vac	Dynamic value (max. 250ms)

External input protection See recommendations in chapter 2.

	AC 100V		AC 120V	AC 230V	
Input current	Typ.	2.63A	2.17A	1.14A	At 10A, see Fig. 3-3
Power factor	Typ.	0.99	0.99	0.97	At 10A, see Fig. 3-4
Crest factor	Typ.	1.5	1.5	1.65	At 10A, The crest factor is the mathematical ratio of the peak value to RMS value of the input current waveform.
Start-up delay	Typ.	300 ms	290ms	240 ms	See Fig. 3-2
Rise time	Typ.	30 ms	30 ms	30 ms	At 10A const. current load, 0 mF load capacitance, see Fig. 3-2
	Typ.	75 ms	75ms	75 ms	At 10A const. current load, 20 mF load capacitance,, see Fig. 3-2
Turn-on overshoot	Max.	200 mV	200 mV	200 mV	See Fig. 3-2

Fig. 3-3 Input current vs. output current

Fig. 3-2 Turn-on behavior, definitions

Fig. 3-4 Power factor vs. output current

Feb. 2018 / CP10.241-R2 Rev0.3-EN - All values are typical figures specified at $230 \mathrm{Vac}, 50 \mathrm{~Hz}$ input voltage, 24 V , 10 A output load, $25^{\circ} \mathrm{C}$ ambient and after a 5 minutes run-in time unless otherwise noted.

4. DC-InPuT

The device is suitable to be supplied from a DC input voltage. Use a battery or a similar DC source. A supply from the intermediate DC-bus of a frequency converter is not recommended and can cause a malfunction or damage the unit. Connect + pole to L , -pole to N and the PE terminal to an earth wire or to the machine ground.

DC input	Nom.	DC 110-150V	$\pm 20 \%$ for CP10.241-Rx
	Nom.	DC 110-300V	$\pm 20 \%$ for CP10.242-R2
DC input range	Min.	$88-180 \mathrm{Vdc}$	Continuous operation for CP10.241-Rx
		$88-360 \mathrm{Vdc}$	Continuous operation for CP10.242-R2
DC input current	Typ.	2.35A	At 110 Vdc and 10A load current
	Typ.	0.84A	At 300Vdc and 10A load current
Allowed Voltage (+) or (-) input to Earth	Max.	360 Vdc	Continuous according to IEC 60664-1
Turn-on voltage	Typ.	80 Vdc	Steady state value
Shut-down voltage	Typ.	70 Vdc	Steady state value
	Typ.	55 Vdc	Dynamic value (max. 250ms)

Fig. 4-1 Wiring for DC Input

5. Input Inrush Current

An active inrush limitation circuit (NTCs, which are bypassed by a relay contact) limits the input inrush current after turn-on of the input voltage.
The charging current into EMI suppression capacitors is disregarded in the first microseconds after switch-on.

		AC 100V	AC 120V	AC 230V	
Inrush current	Max.	$11 A_{\text {peak }}$	$7 A_{\text {peak }}$	$11 A_{\text {peak }}$	At $40^{\circ} \mathrm{C}$, cold start
	Typ.	$9 A_{\text {peak }}$	$6 A_{\text {peak }}$	$6 A_{\text {peak }}$	At $25^{\circ} \mathrm{C}$, cold start
	Typ.	$9 A_{\text {peak }}$	$6 A_{\text {peak }}$	$9 A_{\text {peak }}$	At $40^{\circ} \mathrm{C}$, cold start
Inrush energy	Max.	$0.1 \mathrm{~A}^{2} \mathrm{~s}$	$0.1 \mathrm{~A}^{2} \mathrm{~s}$	$0.4 \mathrm{~A}^{2} \mathrm{~s}$	$\mathrm{At} 40^{\circ} \mathrm{C}$, cold start

6. OUTPUT

The output provides a SELV/PELV/ES1 rated voltage, which is galvanically isolated from the input voltage. The output of the devices includes a decoupling MOSFET for building $1+1$ or $n+1$ redundant power supply systems.
The device is designed to supply any kind of loads, including capacitive and inductive loads. If extreme large capacitors, such as EDLCs (electric double layer capacitors or "UltraCaps") with a capacitance larger than 1.5F are connected to the output, the unit might charge the capacitor in the Hiccup ${ }^{P L U S}$ mode.
The device is featured with a "soft output regulation characteristic" in order to achieve current share between multiple devices when they are connected in parallel. The "soft output regulation characteristic" regulates the output voltage in such a manner that the voltage at no load is approx. 4% higher than at nominal load.

Output voltage	Nom.	DC 24 V	23.8-25.2V
Adjustment range		See chapter 24.2	
Factory settings	typ.	24.1V	$\pm 0.2 \%$, at 10 A , cold unit (results to typ. $23.9 \mathrm{~V}^{ \pm 0.2 \%}$ at 12 A and typ. $25.1 \mathrm{~V}^{ \pm 0.2 \%}$ at no load)
Line regulation	Max.	10 mV	$85-300 \mathrm{Vac}$
Load regulation	Typ.	1000 mV	Static value, $0 \mathrm{~A} \rightarrow$ 10A; see Fig. 6-1
Ripple and noise voltage	Max.	50 mV pp	20 Hz to $20 \mathrm{MHz}, 500 \mathrm{hm}$
Output current	Nom.	12A ${ }^{1)}$	Below $45^{\circ} \mathrm{C}$ ambient temperature, see Fig. 17-1
	Nom.	10A	At $60^{\circ} \mathrm{C}$ ambient temperature, see Fig. 17-1
	Nom.	7.5A	At $70^{\circ} \mathrm{C}$ ambient temperature, see Fig. 17-1
Fuse breaking current ${ }^{2)}$	Typ.	30A	Up to 12ms once every five seconds, see Fig. 6-3.
Overload protection		Included	Electronically protected against overload, no-load and short-circuits. In case of a protection event, audible noise may occur.
Overload behaviour		Continuous current Intermitted current ${ }^{3)}$	Output voltage $>13 \mathrm{Vdc}$, see Fig. 6-1 Output voltage $<13 \mathrm{Vdc}$, see Fig. 6-1
Overload/ short-circuit current	Max.	15.5A	Continuous current, see Fig. 6-1
	Typ.	14A	Intermitted current peak value for typ. 2s Load impedance 10 mOhm , see Fig. 6-2. Discharge current of output capacitors is not included.
	Max.	5A	Intermitted current average value (R.M.S.) Load impedance 10 mOhm , see Fig. 6-2.
Output capacitance	Typ.	$4400 \mu \mathrm{~F}$	Included inside the power supply
Back-feeding loads	Max.	35 V	The unit is resistant and does not show malfunctioning when a load feeds back voltage to the power supply. It does not matter whether the power supply is on or off. The absorbing energy can be calculated according to the built-in large sized output capacitor.
1) This current is also available for temperatures up to $+70^{\circ} \mathrm{C}$ with a duty cycle of 10% and/ or not longer than 1 minute every 10 minutes.			
2) The fuse braking current is an enhanced transient current which helps to start heavy loads or to trip fuses on faulty output branches. The output voltage stays above 20V. See chapter 24.1 for additional measurements.			
3) At heavy overloads (when output voltage falls below 13V), the power supply delivers continuous output current for 2 s. After this, the output is switched off for approx. 18s before a new start attempt is automatically performed. This cycle is repeated as long as the overload exists. If the overload has been cleared, the device will operate normally. See Fig. 6-2.			

Fig. 6-1 Output voltage vs. output current, typ.

Fig. 6-2 Short-circuit on output, Hiccup ${ }^{\text {PLUS }}$ mode, typ.

Fig. 6-3 Dynamic overcurrent capability, typ.

7. Hold-up Time

	AC 100V				AC 120V
Hold-up Time	AC 230V				
	Typ.	73 ms	73 ms	73 ms	At 5A, see Fig. 7-1
	Min.	55 ms	55 ms	55 ms	At 5A, see Fig. 7-1
	Typ.	37 ms	37 ms	37 ms	At 10A, see Fig. 7-1
	Min.	28 ms	28 ms	28 ms	At 10A, see Fig. 7-1

Fig. 7-1 Hold-up time vs. input voltage

Fig. 7-2 Shut-down behavior, definitions

8. DC-OK Relay Contact

This feature monitors the output voltage of the power supply in front of the decoupling device (see also chapter 12).

Contact closes	As soon as the output voltage reaches typically 22Vdc.
Contact opens	As soon as the output voltage dips below 22 Vdc. Short dips will be extended to a signal length of 100 ms . Dips shorter than 1 ms will be ignored.
Switching hysteresis	1 V
Contact ratings	Maximal $60 \mathrm{Vdc} 0.3 \mathrm{~A}, 30 \mathrm{Vdc} 1 \mathrm{~A}, 30 \mathrm{Vac} 0.5 \mathrm{~A}$, resistive load Minimal permissible load: 1 mA at 5 Vdc
Isolation voltage	See dielectric strength table in chapter 19.

Fig. 8-1 DC-ok relay contact behavior

9. Efficiency and Power Losses

		AC 100V	AC 120V	AC 230V	
Efficiency	Typ.	92.2\%	93.0\%	94.7\%	At 10A
	Typ.	91.9\%	92.8\%	94.6\%	At 12A (Power Boost)
Average efficiency*)	Typ.	91.8\%	92.4\%	93.9\%	At 25% at $2.5 \mathrm{~A}, 25 \%$ at 5 A , 25% at 7.5A. 25\% at 10A
Power losses	Typ.	4W	3.7W	2.9W	At 0A
	Typ.	11.3 W	10.7W	8.6W	At 5A
	Typ.	20.3W	18.1W	13.4W	At 10A
	Typ.	25.4W	22.3W	16.4W	At 12A (Power Boost)

*) The average efficiency is an assumption for a typical application where the power supply is loaded with 25% of the nominal load for 25% of the time, 50% of the nominal load for another 25% of the time, 75% of the nominal load for another 25% of the time and with 100% of the nominal load for the rest of the time.

Fig. 9-1 Efficiency vs. output current, typ

Fig. 9-3 Efficiency vs. input voltage at 10A, typ.

Fig. 9-2 Losses vs. output current, typ.

Fig. 9-4 Losses vs. input voltage at 10A, typ.

10. LIfetime Expectancy

The Lifetime expectancy shown in the table indicates the minimum operating hours (service life) and is determined by the lifetime expectancy of the built-in electrolytic capacitors. Lifetime expectancy is specified in operational hours and is calculated according to the capacitor's manufacturer specification. The manufacturer of the electrolytic capacitors only guarantees a maximum life of up to 15 years (131400 h). Any number exceeding this value is a calculated theoretical lifetime which can be used to compare devices.

	AC 100V	AC 120V	AC 230V	
Lifetime expectancy	143000 h	153000 h	188000 h	At 5 A and $40^{\circ} \mathrm{C}$
	405000 h	434000 h	531000 h	At 5 A and $25^{\circ} \mathrm{C}$
	66000 h	78000 h	109000 h	At 10 A and $40^{\circ} \mathrm{C}$
188000 h	22000 h	307000 h	At 10 A and $25^{\circ} \mathrm{C}$	
	37000 h	47000 h	71000 h	At 12 A and $40^{\circ} \mathrm{C}$
	105000 h	132000 h	20000 h	At 12 A and $25^{\circ} \mathrm{C}$

11. MTBF

MTBF stands for Mean Time Between Failure, which is calculated according to statistical device failures, and indicates reliability of a device. It is the statistical representation of the likelihood of a unit to fail and does not necessarily represent the life of a product.
The MTBF figure is a statistical representation of the likelihood of a device to fail. A MTBF figure of e.g. 1000 000h means that statistically one unit will fail every 100 hours if 10000 units are installed in the field. However, it can not be determined if the failed unit has been running for 50000 h or only for 100 h .
For these types of units the MTTF (Mean Time To Failure) value is the same value as the MTBF value.

	AC 100V	AC 120V	AC 230V	
MTBF SN 29500, IEC 61709	535000 h	556 000h	641 000h	At 10 A and $40^{\circ} \mathrm{C}$
	972 000h	1006000 h	1138000 h	At 10 A and $25^{\circ} \mathrm{C}$
MTBF MIL HDBK 217F	205 000h	208 000h	232 000h	At 10 A and $40^{\circ} \mathrm{C}$; Ground Benign GB40
	279 000h	283000 h	318 000h	At 10 A and $25^{\circ} \mathrm{C}$; Ground Benign GB25
	45000 h	46 000h	53 000h	At 10 A and $40^{\circ} \mathrm{C}$; Ground Fixed GF40
	58 000h	59 000h	63 000h	At 10 A and $25^{\circ} \mathrm{C}$; Ground Fixed GF25

12. Functional Diagram

Fig. 12-1 Functional diagram CP10.241-R1 and CP10.241-R3

Fig. 12-2 Functional diagram CP10.241-R2, CP10.242-R2

13. Terminals and Wiring

The terminals are IP20 Finger safe constructed and suitable for field- and factory wiring.

CP10.241-R1	Input	Output	DC-OK-Signal
Type	Quick-connect springclamp termination	Quick-connect springclamp termination	Push-in termination
Solid wire	Max. 6mm ${ }^{2}$	Max. 6mm ${ }^{2}$	Max. 1.5mm ${ }^{2}$
Stranded wire	Max. 4mm ${ }^{2}$	Max. $4 \mathrm{~mm}^{2}$	Max. $1.5 \mathrm{~mm}^{2}$
American Wire Gauge	AWG 20-10	AWG 20-10	AWG 24-16
Max. wire diameter (including ferrules)	2.8 mm	2.8 mm	1.6 mm
Wire stripping length	$10 \mathrm{~mm} / 0.4 \mathrm{inch}$	$10 \mathrm{~mm} / 0.4 \mathrm{inch}$	$7 \mathrm{~mm} / 0.28 \mathrm{inch}$
Screwdriver			3 mm slotted to open the spring
CP10.241-R2, CP10.242-R2	Input	Output	DC-OK-Signal
Type	Plug connector with screw termination	Plug connector with screw termination	Plug connector with screw termination
Solid wire	Max. 4mm ${ }^{2}$	Max. 4mm ${ }^{2}$	Max. 1.5mm ${ }^{2}$
Stranded wire	Max. $2.5 \mathrm{~mm}^{2}$	Max. $2.5 \mathrm{~mm}^{2}$	Max. $1.5 \mathrm{~mm}^{2}$
American Wire Gauge	AWG 20-12	AWG 20-12	AWG 26-14
Max. wire diameter (including ferrules)	2.4 mm	2.4 mm	1.8 mm
Recommended tightening torque	Max. $0.5 \mathrm{Nm}, 4.5 \mathrm{lb}$-in	Max. $0.5 \mathrm{Nm}, 4.5 \mathrm{lb}-\mathrm{in}$	Max. 0.8 Nm , 71b-in
Wire stripping length	$7 \mathrm{~mm} / 0.28 \mathrm{inch}$	$7 \mathrm{~mm} / 0.28 \mathrm{inch}$	$6 \mathrm{~mm} / 0.24 \mathrm{inch}$
Screwdriver	3.5 mm slotted or crosshead No 2	3.5 mm slotted or crosshead No 2	3.5 mm slotted
	Do not unplug the connectors more often than 20 times in total	Do not unplug the connectors more often than 20 times in total	Do not unplug the connectors more often than 20 times in total
CP10.241-R3	Input	Output	DC-OK-Signal
Type	Screw termination	Screw termination	Push-in termination
Solid wire	Max. 6mm ${ }^{2}$	Max. $6 \mathrm{~mm}{ }^{2}$	Max. $1.5 \mathrm{~mm}^{2}$
Stranded wire	Max. 4mm ${ }^{2}$	Max. 4mm ${ }^{2}$	Max. $1.5 \mathrm{~mm}^{2}$
American Wire Gauge	AWG 20-10	AWG 20-10	AWG 24-16
Max. wire diameter (including ferrules)	2.8 mm	2.8 mm	1.6 mm
Recommended tightening torque	Max. 1Nm, 9lb-in	Max. 1Nm, 9lb-in	-
Wire stripping length	$7 \mathrm{~mm} / 0.28 \mathrm{inch}$	$7 \mathrm{~mm} / 0.28 \mathrm{inch}$	7mm / 0.28inch
Screwdriver	3.5 mm slotted or crosshead No 2	3.5 mm slotted or crosshead No 2	3 mm slotted to open the spring

Instructions for wiring:

a) Use appropriate copper cables that are designed for minimum operating temperatures of: $60^{\circ} \mathrm{C}$ for ambient up to $45^{\circ} \mathrm{C}, 75^{\circ} \mathrm{C}$ for ambient up to $60^{\circ} \mathrm{C}$ and $90^{\circ} \mathrm{C}$ for ambient up to $70^{\circ} \mathrm{C}$ minimum.
b) Follow national installation codes and installation regulations!
c) Ensure that all strands of a stranded wire enter the terminal connection!
d) Unused terminal compartments should be securely tightened.
e) Ferrules are allowed and recommended.

14. Replacing Units while the System is Running

This feature is available only for the CP10.241-R2 and CP10.242-R2 units, which are equipped with hot-swappable plug connectors.

Fig. 14-1 Replacing the power supply or redundancy module while the system is running

Replacement instructions (Example for left power supply):

- Switch-off circuit breaker (1a).
- Remove plug (2a).
- Remove plug (3a). The plug prevents the cables from shorting.
- Change power supply.
- Put the plug (3a) back in.
- Put the plug (2a) back in.
- Turn-on the circuit breaker (1a).
- The circuit is redundant again.

To replace the right power supply, repeat the process above using (1b), (2b) and (3b).

15. Front Side and User Elements

A Input Terminals
\mathbf{N}, \mathbf{L} Line input
()ㅏ) PE (Protective Earth) input

B Output Terminals
$+\quad$ Positive output

- Negative (return) output

C Output voltage potentiometer See chapter 24.2.

D DC-OK LED (green)
On, when the output voltage is above 22 V .

E DC-OK Relay Contact
The DC-OK relay contact is synchronized with the DC-OK LED. See chapter 8 for details.

16. EMC

The EMC behavior of the device is designed for applications in industrial environment as well as in residential, commercial and light industry environments.

EMC Immunity	According to	neric standards EN 61000-6-1	1000-6-2	
Electrostatic discharge	EN 61000-4-2	Contact discharge Air discharge	$\begin{aligned} & \hline 8 \mathrm{kV} \\ & 15 \mathrm{kV} \end{aligned}$	Criterion A Criterion A
Electromagnetic RF field	EN 61000-4-3	$80 \mathrm{MHz}-2.7 \mathrm{GHz}$	20V/m	Criterion A
Fast transients (Burst)	EN 61000-4-4	Input lines Output lines DC-OK signal (coupling clamp)	$\begin{aligned} & 4 \mathrm{kV} \\ & 2 \mathrm{kV} \\ & 2 \mathrm{kV} \end{aligned}$	Criterion A Criterion A Criterion A
Surge voltage on input	EN 61000-4-5	$\begin{aligned} & \mathrm{L} \rightarrow \mathrm{~N} \\ & \mathrm{~L} \rightarrow \mathrm{PE}, \mathrm{~N} \rightarrow \mathrm{PE} \end{aligned}$	$\begin{aligned} & 2 \mathrm{kV} \\ & 4 \mathrm{kV} \\ & \hline \end{aligned}$	Criterion A Criterion A
Surge voltage on output	EN 61000-4-5	$\begin{aligned} & +\rightarrow- \\ & +/-\rightarrow \mathrm{PE} \end{aligned}$	$\begin{aligned} & 1 \mathrm{kV} \\ & 2 \mathrm{kV} \end{aligned}$	Criterion A Criterion A
Surge voltage on Signals	EN 61000-4-5	DC-OK signal \rightarrow PE	1kV	Criterion A
Conducted disturbance	EN 61000-4-6	$0.15-80 \mathrm{MHz}$	20V	Criterion A
Mains voltage dips	EN 61000-4-11	0% of 100 Vac 40% of 100 Vac 70% of 100 Vac 0% of 200 Vac 40% of 200 Vac 70% of 200 Vac	0Vac, 20ms $40 \mathrm{Vac}, 200 \mathrm{~ms}$ $70 \mathrm{Vac}, 500 \mathrm{~ms}$ $0 \mathrm{Vac}, 20 \mathrm{~ms}$ $80 \mathrm{Vac}, 200 \mathrm{~ms}$ $140 \mathrm{Vac}, 500 \mathrm{~ms}$	Criterion A Criterion C Criterion A Criterion A Criterion A Criterion A
Voltage interruptions	EN 61000-4-11	0\% of 200Vac (=0V)	5000ms	Criterion C
Voltage sags	SEMI F47 0706	Dips on the input voltage acco 80% of $120 \mathrm{Vac}(96 \mathrm{Vac})$ 70% of $120 \mathrm{Vac}(84 \mathrm{Vac})$ 50% of $120 \mathrm{Vac}(60 \mathrm{Vac})$	to SEMI F47 sta 1000 ms 500 ms 200 ms	ard Criterion A Criterion A Criterion A
Powerful transients	VDE 0160	Over entire load range	750V, 0.3 ms	Criterion A

Criterions:
A: Power supply shows normal operation behavior within the defined limits.
C: Temporary loss of function is possible. Device may shut-down and restarts by itself. No damage or hazards for the power supply will occur.

EMC Emission	According to the generic standards EN 61000-6-3 and EN 61000-6-4	
Conducted emission input lines	EN 55011, EN 55015, EN 55022, FCC Part 15, CISPR 11, CISPR 22	Class B
Conducted emission output lines	IEC/CISPR 16-1-2, IEC/CISPR 16-2-1 Lim	Limits for DC power ports according to EN 61000-6-3 are fulfilled
Radiated emission	EN 55011, EN 55022	Class B
Harmonic input current	EN 61000-3-2	Class A fulfilled between OA and 12A load Class C fulfilled between 6A and 12A load
Voltage fluctuations, flicker	EN 61000-3-3	Fulfilled, tested with constant current loads, non pulsing
This device complies with FCC Part 15 rules. Operation is subjected to following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.		
Switching Frequencies		
PFC converter	100 kHz Fixed frequency	
Main converter	84-140kHz Output load dependent	
Auxiliary converter	60 kHz Fixed frequency	

17. Environment

Operational temperature	$-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}\left(-13^{\circ} \mathrm{F}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$	Operational temperature is the same as the ambient or surrounding temperature and is defined as the air temperature 2 cm below the unit.
Storage temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.185^{\circ} \mathrm{F}\right)$	For storage and transportation
Output de-rating ${ }^{1)}$	$\begin{aligned} & 0.13 \mathrm{~A} /{ }^{\circ} \mathrm{C} \\ & 0.25 \mathrm{~A} /{ }^{\circ} \mathrm{C} \\ & 0.63 \mathrm{~A} / 1000 \mathrm{~m} \text { or } 5^{\circ} \mathrm{C} / 1000 \mathrm{~m} \\ & 0.38 \mathrm{~A} /-5 \mathrm{kPa} \text { or } 3^{\circ} \mathrm{C} /-5 \mathrm{kPa} \\ & \hline \end{aligned}$	Between $+45^{\circ} \mathrm{C}$ and $+60^{\circ} \mathrm{C}\left(113^{\circ} \mathrm{F}\right.$ to $\left.140^{\circ} \mathrm{F}\right)$ Between $+60^{\circ} \mathrm{C}$ and $+70^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$ For altitudes $>2000 \mathrm{~m}$ (6560ft), see Fig. 17-2 For atmospheric pressures $<80 \mathrm{kPa}$, see Fig. 17-2
Humidity	5 to 95\% r.h.	According to IEC 60068-2-30 Do not energize while condensation is present.
Atmospheric pressure	$110-47 \mathrm{kPa}$	See see Fig. 17-2 for details
Altitude	Up to 6000m (20 000ft)	See see Fig. 17-2 for details
Over-voltage category	III	According to IEC 60664-1 for altitudes up to 2000m
	II	According to IEC 60664-1, for altitudes between 2000 and 6000 m and atmospheric pressures from $80-47 \mathrm{kPa}$.
Degree of pollution	2	According to IEC 60664-1, not conductive
Vibration sinusoidal	$\begin{aligned} & 2-17.8 \mathrm{~Hz}: \pm 1.6 \mathrm{~mm} ; \\ & 17.8-500 \mathrm{~Hz}: 2 \mathrm{~g} \\ & 2 \text { hours / axis } \end{aligned}$	According to IEC 60068-2-6
Shock ${ }^{2)}$	$30 \mathrm{~g} 6 \mathrm{~ms}, 20 \mathrm{~g} 11 \mathrm{~ms}$ 3 bumps per direction, 18 bumps in total	According to IEC 60068-2-27
LABS compatibility	As a rule, only non-silicon precip LABS criteria and is suitable for	ating materials are used. The unit conforms to the e in paint shops.
Corrosive gases	Tested according to ISA-71.04-1 Method 4 for a service life of m	, Severity Level G3 and IEC 60068-2-60 Test Ke mum 10years in these environments.
Audible noise	Some audible noise may be emi short circuit.	d from the power supply during no load, overload or
1) The de-rating is not hardware controlled. The customer has to take this into consideration to stay below the de-rated current limits in order not to overload the unit. 2) Shock and vibration is tested in combination with DIN-Rails according to EN 60715 with a height of 15 mm and a thickness of 1.3 mm and standard orientation.		

Fig. 17-1 Output current vs. ambient temp.

Fig. 17-2 Output current vs. altitude

18. Safety and Protection Features

Isolation resistance	Min.	500 MOhm	At delivered condition between input and output, measured with 500 Vdc
	Min.	500MOhm	At delivered condition between input and PE, measured with 500 Vdc
	Min.	500MOhm	At delivered condition between output and PE, measured with 500 Vdc
	Min.	500MOhm	At delivered condition between output and DC-OK contacts, measured with 500 Vdc
PE resistance	Max.	0.10hm	Resistance between PE terminal and the housing in the area of the DIN-rail mounting bracket.
Output over-voltage protection ${ }^{11}$	Typ.	30.5 Vdc	
	Max.	32 Vdc	
Class of protection		I	According to IEC 61140
Degree of protection		IP 20	According to EN/IEC 60529
Over-temperature protection ${ }^{2)}$		Included	Output shut-down with automatic restart.
Input transient protection		MOV	(Metal Oxide Varistor) For protection values see chapter 16 (EMC).
Internal input fuse		Included	Not user replaceable slow-blow high-braking capacity fuse
Touch current (leakage current)	Typ.	$0.14 \mathrm{~mA} / 0.36 \mathrm{~mA}$	At 100Vac, 50 Hz , TN-, TT-mains / IT-mains
	Typ.	$0.20 \mathrm{~mA} / 0.50 \mathrm{~mA}$	At 120Vac, 60 Hz , TN-,TT-mains / IT-mains
	Typ.	$0.33 \mathrm{~mA} / 0.86 \mathrm{~mA}$	At $230 \mathrm{Vac}, 50 \mathrm{~Hz}$, TN-, TT-mains / IT-mains
	Max.	$0.18 \mathrm{~mA} / 0.43 \mathrm{~mA}$	At 110Vac, 50 Hz , TN-, TT-mains / IT-mains
	Max.	$0.26 \mathrm{~mA} / 0.61 \mathrm{~mA}$	At 132Vac, 60Hz, TN-,TT-mains / IT-mains
	Max.	$0.44 \mathrm{~mA} / 1.05 \mathrm{~mA}$	At $264 \mathrm{Vac}, 50 \mathrm{~Hz}, \mathrm{TN}$-, TT-mains / IT-mains

1) In case of an internal defect, a redundant circuit limits the maximum output voltage. The output shuts down and automatically attempts to restart.
2) Temperature sensors are installed on critical components inside the unit and turn the unit off in safety critical situations, which can happen e.g. when ambient temperature is too high, ventilation is obstructed or the de-rating requirements are not followed. There is no correlation between the operating temperature and turn-off temperature since this is dependent on input voltage, load and installation methods.

19. DieLectric Strength

The output voltage is floating and has no ohmic connection to the ground. Type and routine tests are conducted by the manufacturer. Field tests may be conducted in the field using the appropriate test equipment which applies the voltage with a slow ramp (2 s up and 2 s down). Connect all input-terminals together as well as all output poles before conducting the test. When testing, set the cut-off current settings to the value in the table below.

Fig. 19-1 Dielectric strength

		A	B	C	D
Type test	60 s	2500 Vac	4000 Vac	1000 Vac	500 Vac
Routine test	5 s	2500 Vac	2500 Vac	500 Vac	500 Vac
Field test	5 s	2000 Vac	2000 Vac	500 Vac	500 Vac
Cut-off current setting for field test	$>10 \mathrm{~mA}$	$>10 \mathrm{~mA}$	$>20 \mathrm{~mA}$	$>1 \mathrm{~mA}$	

It is recommend that either the + pole, the - pole or any other part of the output circuit shall be connected to the earth/ground system. This helps to avoid situations in which a load starts unexpectedly or can not be switched off when unnoticed earth faults occur.

B*) When testing input to DC-OK ensure that the maximal voltage between DC-OK and the output is not exceeded (column D). We recommend connecting DC-OK pins and the output pins together when performing the test.

20. Approvals

EC Declaration of Conformity	$C E$	The CE mark indicates conformance with the - EMC directive, - Low-voltage directive and the - ATEX directive (planned)
$\begin{aligned} & \text { IEC 60950-1 } \\ & 2^{\text {nd }} \text { Edition } \\ & \text { planned } \end{aligned}$	$\underset{\text { СВ SCHEME }}{\text { IECEE }}$	CB Scheme for I.T.E. Information Technology Equipment
$\begin{aligned} & \text { IEC 62368-1 } \\ & 2^{\text {nd }} \text { Edition } \\ & \text { planned } \end{aligned}$	$\underset{\text { СB SCHEME }}{\text { IECEE }}$	CB Scheme for I.C.T. Information and Communication Technology
$\begin{aligned} & \text { IEC 61010-2-201 } \\ & 2^{\text {nd }} \text { Edition } \\ & \text { planned } \end{aligned}$	IECEE	CB Scheme for electrical equipment for measurement, control, and laboratory use - Part 2-201: Particular requirements for control equipment
ANSI/UL 61010-2-201 (former UL 508) planned	© (UL) us usted Ind. Cont. Eq.	Listed as Open Type Device for use in Control Equipment UL Category NMTR, NMTR7 E-File: E198865
ANSI/ISA 12.12.01 Class I Div 2 planned	© (U) us Lusted	Listed for use in Hazardous Location Class I Div 2
EN 60079-0, EN 60079-7 ATEX planned		Approval for use in hazardous locations Zone 2 Category 3G. Number of ATEX certificate: T.B.D.
IEC 60079-0, IEC 60079-7 planned	IECEx	Suitable for use in Class 1 Zone 2 Groups IIa, IIb and IIc locations. Number of IECEx certificate: T.B.D.
EAC TR Registration (only for CP10.241-R1 and CP10.241-R3)		Registration for the Eurasian Customs Union market (Russia, Kazakhstan, Belarus)

21. Other Fulfilled Standards

RoHS Directive	RoHS	Directive 2011/65/EU of the European Parliament and the Council of June $8^{\text {th }}, 2011$ on the restriction of the use of certain hazardous substances in electrical and electronic equipment.
REACH Directive	REACH	Directive 1907/2006/EU of the European Parliament and the Council of June $1^{\text {st }}, 2007$ regarding the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH)
IEC/EN 61558-2-16 (Annex BB)	Safety Isolating Transformer	Safety Isolating Transformers corresponding to Part 2-6 of the IEC/EN 61558

22. Physical Dimensions and Weight

Width	$39 \mathrm{~mm} \mathrm{1.54"} \mathrm{\prime}$
Height	$124 \mathrm{~mm} \mathrm{4.88}^{\prime \prime}$ (without plug-connectors) Depth
$117 \mathrm{~mm} 4.61^{\prime \prime}$ (without plug-connector) The DIN-rail height must be added to the unit depth to calculate the total required installation depth.	
Weight	$600 \mathrm{~g} / 1.32 \mathrm{lb}$
DIN-Rail	Use 35mm DIN-rails according to EN 60715 or EN 50022 with a height of 7.5 or 15 mm.
Housing material	Body: Aluminium alloy Cover: zinc-plated steel
Installation clearances	See chapter 2
Penetration protection	Small parts like screws, nuts, etc. with a diameter larger than 4 mm

Fig. 22-1 Front view
CP10.241-R1 CP10.241-R3

Fig. 22-3 Front view CP10.241-R2

Fig. 22-2 Side view CP10.241-R1 and CP10.241-R3

Fig. 22-4 Side view CP10.241-R2

23. Accessories

23.1. ZM4.WALL - WalL/Panel Mount Bracket

This bracket is used to mount the devices on a wall/panel without utilizing a DIN-Rail and can be mounted without detaching the DIN-rail brackets of the power supply.

23.2. ZM12.SIDE - Side Mounting Bracket

This bracket is used to mount the power supply sideways with or without utilizing a DIN-Rail. The two aluminum brackets and the black plastic slider of the unit have to be detached, so that the steel brackets can be mounted. For sideway DIN-rail mounting, the removed aluminum brackets and the black plastic slider need to be mounted on the steel bracket.

Fig. 23-7
Side mounting without DIN-
rail brackets
(Picture shows the CP10.241-R3)

Fig. 23-8
Side mounting with DIN-rail brackets
(Picture shows the CP10.241-R3)

Fig. 23-9
Mounting Dimensions Side mounting bracket

24. Application Notes

24.1. Peak Current Capability

The unit can deliver peak currents (up to several milliseconds) which are higher than the specified short term currents. This helps to start current demanding loads. Solenoids, contactors and pneumatic modules often have a steady state coil and a pick-up coil. The inrush current demand of the pick-up coil is several times higher than the steady-state current and usually exceeds the nominal output current. The same situation applies when starting a capacitive load. The peak current capability also ensures the safe operation of subsequent circuit breakers of load circuits. The load branches are often individually protected with circuit breakers or fuses. In case of a short or an overload in one branch circuit, the fuse or circuit breaker need a certain amount of over-current to open in a timely manner. This avoids voltage loss in adjacent circuits.
The extra current (peak current) is supplied by the power converter and the built-in large sized output capacitors of the power supply. The capacitors get discharged during such an event, which causes a voltage dip on the output. The following two examples show typical voltage dips for a resistive load:

Fig. 24-1 20A peak current for $\mathbf{5 0 m s}$, typ. ($2 x$ the nominal current)

Fig. 24-3 30A peak current for $\mathbf{1 2 m s}$, typ. ($3 x$ the nominal current)

Fig. 24-2 50A peak current for 5ms, typ. (5x the nominal current)

Please note: The DC-OK relay triggers when the voltage dips more than 10% for longer than 1 ms .

Peak current voltage dips

At 20A for 50 ms , resistive load At 50A for 2 ms , resistive load At 50A for 5 ms , resistive load

24.2. Adjusting the Output Voltage

A voltage adjustment potentiometer can be found behind the flap on the front of the unit. However, it is not recommended to change the output voltage since load sharing between power supplies connected in parallel can only be achieved by a precise setting of the output voltages. The factory settings allow precise load sharing and only qualified personnel should change the adjustment potentiometer.

Lower end of the specified adjustment range

Output voltage	Nom.	24.0 V	Due to the soft output voltage regulation characteristic (parallel mode feature) a setting to 24.0 V results to an output voltage of $23.8 \mathrm{~V}^{ \pm 0.2 \%}$ at 12 A and $25.0 \mathrm{~V}^{ \pm 0.2 \%}$ at no load. See Fig. 24-4.
Output current	Min.	12A	At $45^{\circ} \mathrm{C}$
	Min.	10A	At $60^{\circ} \mathrm{C}$
	Min.	7.55A	At $70^{\circ} \mathrm{C}$
		Reduce output current linearly between $+45^{\circ} \mathrm{C}$ and $+70^{\circ} \mathrm{C}$.	
Upper end of the specified adjustment range			
Output voltage	Nom.	27.0 V	Due to the soft output voltage regulation characteristic (parallel mode feature) a setting to 27.0 V results to an output voltage of $26.7 \mathrm{~V}^{ \pm 0.2 \%}$ at 10.6 A and $28.2 \mathrm{~V}^{ \pm 0.2 \%}$ at no load. See Fig. 24-4.
Output current	Min.	10.6A	At $45^{\circ} \mathrm{C}$
	Min.	8.9A	At $60^{\circ} \mathrm{C}$
	Min.	6.7A	At $70^{\circ} \mathrm{C}$
		Reduce	cut current linearly between $+45^{\circ} \mathrm{C}$ and $+70^{\circ} \mathrm{C}$.

The maximum output voltage which can occur at the clockwise end position of the potentiometer due to tolerances is 30 V . It is not a guaranteed value which can be achieved.
Current values between 24 and 27V can be interpolated.

Fig. 24-4 Adjustment range of the output
voltage

The output voltage shall only be changed when absolutely necessary, e.g. for battery charging as described in the next chapter.

24.3. Charging of Batteries

This redundancy power supply is ideal for charging batteries due to the decoupling circuit built in to the output stage which does not require a fuse or diode between the power supply and the battery.
It can be used to charge sealed lead acid (SLA) or valve regulated lead acid (VRLA) lead batteries when following these instructions:
a) Set output voltage (measured at disconnected battery) very precisely to the end-of-charge voltage. Use the potentiometer, which is hidden behind the flap on the front of the unit. See chapter 24.2.

Battery temperature	$10^{\circ} \mathrm{C}$	$20^{\circ} \mathrm{C}$	$30^{\circ} \mathrm{C}$	$40^{\circ} \mathrm{C}$
End-of-charge voltage	27.8 V	27.5 V	27.15 V	26.8 V

b) Ensure that the ambient temperature of the power supply stays below $40^{\circ} \mathrm{C}$.
c) Use only matched batteries when connecting 12 V types in series.
d) The return current to the power supply (battery discharge current) is typically 3 mA when the power supply is switched off.

24.4. Output Circuit Breakers

Standard miniature circuit breakers (MCB's or UL 1077 circuit breakers) are commonly used for AC-supply systems and may also be used on 24 V branches.
MCB's are designed to protect wires and circuits. If the ampere value and the characteristics of the MCB are adapted to the wire size that is used, the wiring is considered as thermally safe regardless of whether the MCB opens or not.
To avoid voltage dips and under-voltage situations in adjacent 24 V branches which are supplied by the same source, a fast (magnetic) tripping of the MCB is desired. A quick shutdown within 10 ms is necessary corresponding roughly to the ride-through time of PLC's. This requires power supplies with high current reserves and large output capacitors. Furthermore, the impedance of the faulty branch must be sufficiently small in order for the current to actually flow. The best current reserve in the power supply does not help if Ohm's law does not permit current flow. The following table has typical test results showing which B- and C-Characteristic MCBs magnetically trip depending on the wire cross section and wire length.

Fig. 24-5 Test circuit

S1... Fault simulation switch

Maximal wire length*) for a fast (magnetic) tripping:

	$0.75 \mathrm{~mm}^{2}$	$1.0 \mathrm{~mm}^{2}$	$1.5 \mathrm{~mm}^{2}$	$2.5 \mathrm{~mm}^{2}$
C-2A	30 m	37 m	54 m	84 m
C-3A	25 m	30 m	46 m	69 m
C-4A	9 m	15 m	25 m	34 m
C-6A	3 m	3 m	4 m	7 m
C-8A				
B-6A	12 m	15 m	21 m	34 m
B-10A	3 m	3 m	4 m	9 m
B-13A	2 m	2 m	3 m	6 m

[^0]
24.5. Series Operation

Power supplies of the same type can be connected in series for higher output voltages. It is possible to connect as many units in series as needed, providing the sum of the output voltage does not exceed 150 Vdc . Voltages with a potential above 60 Vdc must be installed with a protection against touching.
Avoid return voltage (e.g. from a decelerating motor or battery) which is applied to the output terminals.
Keep an installation clearance of 15 mm (left / right) between two power supplies and avoid installing the power supplies on top of each other. Do not use power supplies in series in mounting orientations other than the
 standard mounting orientation (input terminals on bottom of the unit).
Pay attention that leakage current, EMI, inrush current, harmonics will increase when using multiple power supplies.

24.6. Parallel Use to Increase Output Power

Power supplies can be paralleled to increase the output power. For redundancy applications one extra power supply is always needed for sufficient output current in case one unit fails.
The unit is permanently set to "parallel use" mode in order to achieve load sharing between power supplies connected in parallel. The "Parallel use" mode regulates the output voltage in such a manner that the voltage at no load is approx. 4% higher than at nominal load. See also chapter 6. Energize all units at the same time. It also might be necessary to cycle the input power (turn-off for at least five seconds), if the output was in overload or short circuits and the required output current is higher than
 the current of one unit.
Keep an installation clearance of 15 mm (left / right) between two power supplies and avoid installing the power supplies on top of each other.
Do not use power supplies in parallel in mounting orientations other than the standard mounting orientation (input terminals on bottom of the unit) or in any other condition where a derating of the output current is required (e.g. altitude).
Pay attention that leakage current, EMI, inrush current, harmonics will increase when using multiple power supplies. Do not load paralleled power supplies with higher currents as shown in the following diagrams:

Fig. 24-7 Output current vs. ambient temp. for three paralleled units

24.7. Parallel Use for Redundancy

Power supplies can be paralleled for redundancy to gain higher system availability. The unit is already equipped with a MOSFET as decoupling device on the output to avoid, that a faulty unit becomes a load for the other power supplies and the output voltage cannot be maintained any more.
Recommendations for building redundant power systems:
a) Use separate input fuses for each power supply.
b) Monitor the individual power supply units by utilizing the built-in DC-OK relay contacts on each power supply.

Fig. 24-8 Wiring diagram, 1+1 Redundancy for 10A output current

Note: Use separate mains systems for each power supply whenever it is possible

Fig. 24-9 Wiring diagram, N+1 Redundancy for 20A output current

Observe the temperature derating requirements of Fig. 24-6 and Fig. 24-7 for $n+1$ redundancy applications.
Note: Use separate mains systems for each power supply whenever it is possible.

24.8. Operation on Two Phases

The power supply can also be used on two-phases of a three-phasesystem. Such a phase-to-phase connection is allowed as long as the supplying voltage is below $240 \mathrm{~V}^{+10 \%}$.
The maximum allowed voltage between a Phase and the PE must be below 300 Vac .

24.9. Use in a Tightly Sealed Enclosure

When the power supply is installed in a tightly sealed enclosure, the temperature inside the enclosure will be higher than outside. In such situations, the inside temperature defines the ambient temperature for the power supply.
The following measurement results can be used as a reference to estimate the temperature rise inside the enclosure. The power supply is placed in the middle of the box, no other heat producing items are inside the box The temperature sensor inside the box is placed in the middle of the right side of the power supply with a distance of 1 cm .

	Case A	Case B	Case C	Case D
Enclosure size	$\mathbf{1 1 0 \times 1 8 0 \times 1 6 5 \mathrm { mm }}$	$\mathbf{1 1 0 \times 1 8 0 \times 1 6 5 \mathrm { mm }}$	$\mathbf{1 8 0 \times 1 8 0 \times 1 6 5 \mathrm { mm }}$	$\mathbf{1 8 0 \times 1 8 0 \times 1 6 5 \mathrm { mm }}$
	Rittal Typ IP66 Box			
	PK 9516 100,	PK 9516 100,	PK 9519 100,	PK 9519 100,
	plastic	plastic	plastic	plastic
Input voltage	230 Vac	230 VaC	230 Vac	230 Vac
Load	$24 \mathrm{~V}, 8 \mathrm{~A} ;(=\mathbf{8 0 \%})$	$24 \mathrm{~V}, 10 \mathrm{~A} ;(=\mathbf{1 0 0 \%})$	$24 \mathrm{~V}, 8 \mathrm{~A} ;(=\mathbf{8 0 \%})$	$24 \mathrm{~V}, 10 \mathrm{~A} ;(=\mathbf{1 0 0 \%})$
Temperature inside the box	$45.4^{\circ} \mathrm{C}$	$49.0^{\circ} \mathrm{C}$	$42.0^{\circ} \mathrm{C}$	$44.4^{\circ} \mathrm{C}$
Temperature outside the box	$25.0^{\circ} \mathrm{C}$	$25.0^{\circ} \mathrm{C}$	$25.0^{\circ} \mathrm{C}$	$25.0^{\circ} \mathrm{C}$
Temperature rise	20.4 K	24.0 K	17.0 K	19.4 K

24.10. Mounting Orientations

Mounting orientations other than all terminals on the bottom require a reduction in continuous output power or a limitation in the maximum allowed ambient temperature. The amount of reduction influences the lifetime expectancy of the power supply. Therefore, two different derating curves for continuous operation can be found below:

Curve A1 Recommended output current.

Curve A2 Max allowed output current (results in approximately half the lifetime expectancy of A1).
Fig. 24-10
Mounting
Orientation A
(Standard
orientation)

Fig. 24-11
Mounting
Orientation B
(Upside down)

Fig. 24-12
Mounting
Orientation C (Table-top mounting)

Fig. 24-13
Mounting
Orientation D
(Horizontal cw)

Fig. 24-14
Mounting
Orientation E (Horizontal ccw)

Feb. 2018 / CP10.241-R2 Rev0.3-EN - All values are typical figures specified at $230 \mathrm{Vac}, 50 \mathrm{~Hz}$ input voltage, 24V, 10A output load, $25^{\circ} \mathrm{C}$ ambient and after a 5 minutes run-in time unless otherwise noted.

[^0]: *) Don't forget to consider twice the distance to the load (or cable length) when calculating the total wire length (+ and - wire).

