

DC Applications Transient Voltage Filters

Specifications

Electrical

Input Voltage: Up to 500VDC

Resistance: 10 to 680 ohms, ±10%, 0.5 watt

Diode: 1 Amp @ 400 or 1,000PIV

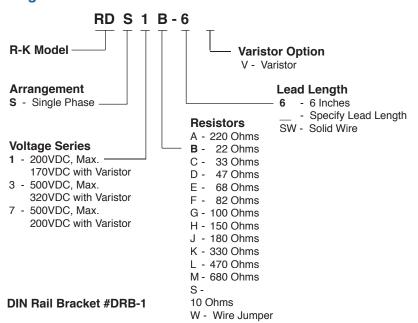
Varistors:

Voltage	Max. Allowable	Max. Clamping	Energy
Code	DC Voltage	Voltage	(Joules
1	170VDC	340V @ 10A	10
3	320VDC	650V @ 10A	17
7	200VDC	395V @ 25A	25

Reverse Leakage Current: <50 microamps

Physical

Termination: #18 Stranded Wire Leads or #20 Solid Wire Leads **Packaging:** Epoxy Filled

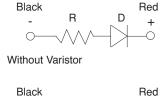

Weight: 1 Oz.

Ambient Temperatures

Operating: -40°C to 85°C Storage: -40°C to 85°C

Ordering Information

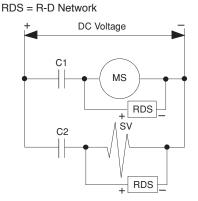
Up to 170 to 500 Volt Ratings

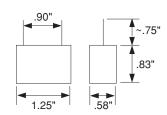

- DC Applications
- Varistor Options
- Stranded Wire or Solid Wire Leads

Operation Transient Volt

Transient Voltage Filters

R-D networks (Resistance-Diode) are applied to circuits where transient electrical voltages can cause a malfunction or damage in solid state controls or control systems (PLCs, CNCs, NCs, Solid State Counters, etc.). The RDSs are applied in parallel with DC (Direct Current) coils to absorb the transients generated when the coils are de-energized.


Connections


With Varistor

Hook-Up Example

 $\begin{array}{ll} \text{MS} &= \text{Motor Starter} & \text{SV} = \text{Solenoid Valve} \\ \text{C1} &= \text{Contact} & \text{C2} = \text{Contact} \end{array}$

Dimensions

