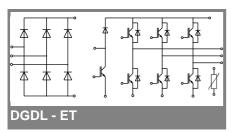


3-phase bridge rectifier + brake chopper + 3-phase bridge inverter **SK 30 DGDL 066 ET**

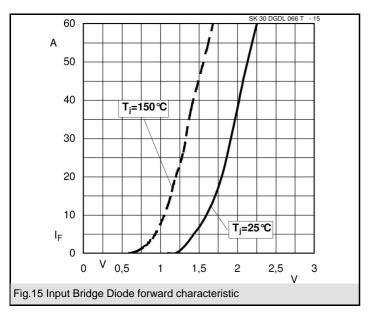
Target Data

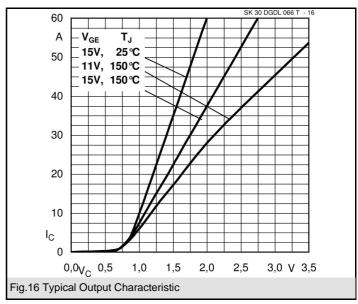
Features

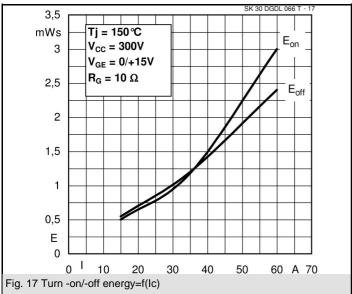

- Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- Trench IGBT technology
- · CAL technology FWD
- Integrated NTC temperature sensor

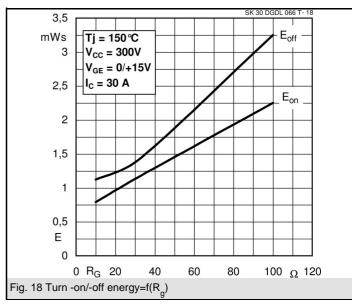
Typical Applications

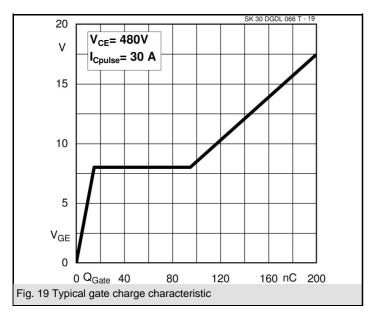
- Inverter up to 10 kVA
- Typ. motor power 4 kW

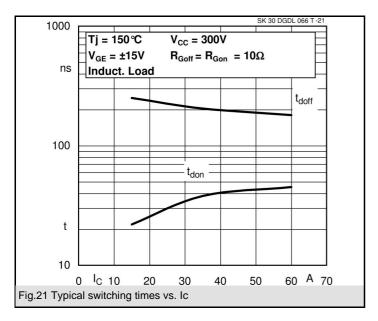

Remarks

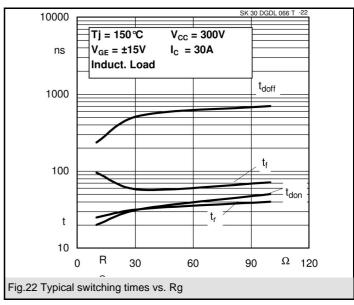

• V_{CE,sat} , V_F = chip level value

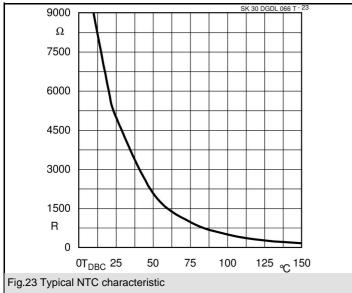


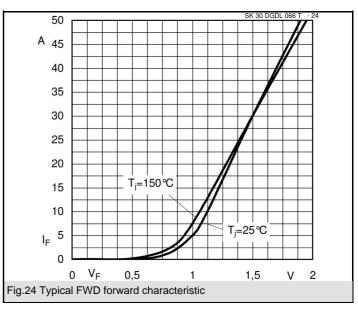

Absolute Maximum Ratings $T_s = 25^{\circ}C$, unless otherwise specified								
Symbol	Conditions	Values	Units					
IGBT - Inverter, chopper								
V _{CES}	T _s = 25 (70) °C, T _j = 175 °C	600 38 (31)	V A					
I _C I _{CRM} V _{GES}	$T_s = 25 (70) ^{\circ}C, T_j = 150 ^{\circ}C$ $I_{CRM} = 2 \times I_{Cnom}, t_p = 1 \text{ ms}$	35 (26) 60 ± 20	A A V					
T _j		-40 + 175	°C					
Diode - Inverter, chopper								
I _F	$T_s = 25 (70) ^{\circ}C, T_j = 150 ^{\circ}C$ $T_s = 25 (70) ^{\circ}C, T_j = 175 ^{\circ}C$	32 (24) 36 (28)	A A					
I _{FRM}	$I_{FRM} = 2xI_{Fnom}, t_p = 1 \text{ ms}$		60					
Diode - Rectifier								
V _{RRM} I _F I _{FSM}	$T_s = 70 ^{\circ}\text{C}$ $t_p = 10 \text{ms}$, $\sin 180 ^{\circ}$, $T_i = 25 ^{\circ}\text{C}$	800 35 370	V A A					
i²t	$t_p = 10 \text{ ms, sin } 180 ^{\circ}, T_j = 25 ^{\circ}\text{C}$	680	A²s					
$\begin{matrix}T_{j}\\T_{sol}\\T_{stg}\end{matrix}$	Terminals, 10 s	-40 + 175 260 -40 + 125	ů Ĉ Ĉ					
V _{isol}	AC, 1 min.	2500	V					

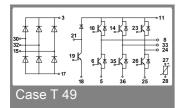

Characteristics		T _s = 25°C	r _s = 25°C , unless otherwise specified						
Symbol	Conditions	min.	typ.	max.	Units				
IGBT - Inverter, chopper									
V _{CE(sat)}	I _{Cnom} = 30 A, T _i = 25 (150) °C		1,45 (1,65)	1,85 (2,05)	V				
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 0.43$ mA	5	5,8	6,5	V				
V _{CE(TO)}	T _j = 25 (150) °C		0,9 (0,85)	1 (0,9)	V				
r_{CE}	T _j = 25 (150) °C		18 (27)	28 (38)	mΩ				
C _{ies}	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$		1,63		nF				
C _{oes}	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$		0,11		nF				
C _{res}	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$		0,05		nF				
$R_{th(j-s)}$	per IGBT		1,8		K/W				
t _{d(on)}	under following conditions		20		ns				
t _r	$V_{CC} = 300 \text{ V}, V_{GE} = \pm 15 \text{V}$		25		ns				
t _{d(off)}	I _{Cnom} = 35 A, T _j = 125 °C		235		ns				
t _f	$R_{Gon} = R_{Goff} = 10 \Omega$		95		ns				
$E_{on} (E_{off})$	inductive load		1,18 (1,2)		mJ				
Diode - Inverter, chopper									
$V_F = V_{EC}$	I _F = 30 A, T _i = 25 (150) °C		1,5 (1,5)	1,7 (1,7)	V				
$V_{(TO)}$	$T_j = 25 (150) ^{\circ}C$		1 (0,9)		V				
r _T	T _j = 150 () °C		20		mΩ				
$R_{th(j-s)}$	per diode		2,3		K/W				
I _{RRM}	under following conditions		46,3		Α				
Q_{rr}	$I_{Fnom} = 30 \text{ A}, V_{R} = 300 \text{ V}$		3,95		μC				
E _{rr}	$V_{GE} = 0 \text{ V}, T_j = 150^{\circ}\text{C}$		1,01		mJ				
	$di_{F}/dt = -1880 \text{ A}/\mu\text{s}$								
Diode rectifier									
V_{F}	$I_{Fnom} = 25 \text{ A}, T_i = 25 \text{ °C}$		1,1		V				
$V_{(TO)}$	T _i = 150 °C		0,8		V				
r _T	T _j = 150 °C		15		mΩ				
$R_{th(j-s)}$	per diode		1,7		K/W				
	Temperature Sensor								
R _{ts}	5 %, T _r = 25 (100) °C		5000(493)		Ω				
Mechanical Data									
w			30		g				
M_s	Mounting torque	2,25		2,5	Nm				

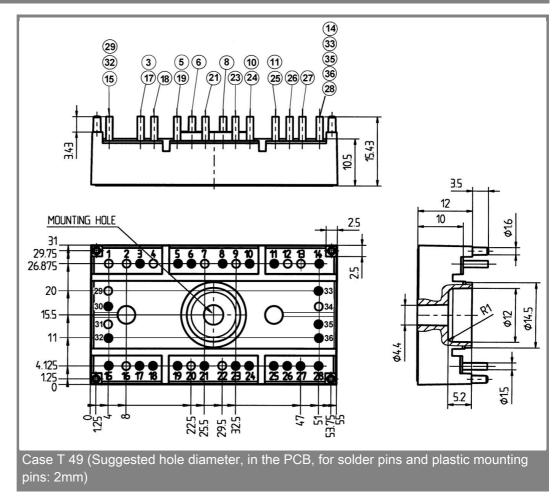












This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.