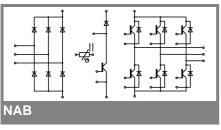


MiniSKiiP[®] 2

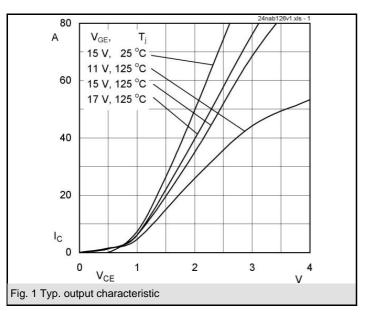
3-phase bridge rectifier + brake chopper + 3-phase bridge inverter SKIIP 24NAB126V1

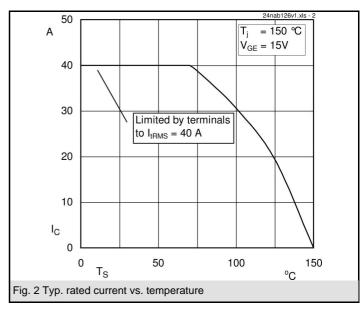
Features

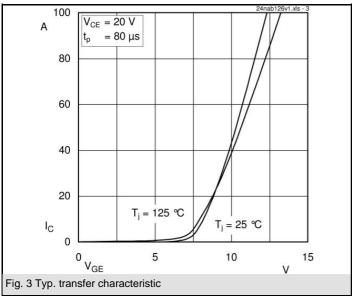

- Fast Trench IGBTs
- Robust and soft freewheeling diodes in CAL technology
- Highly reliable spring contacts for electrical connections
- UL recognised file no. E63532

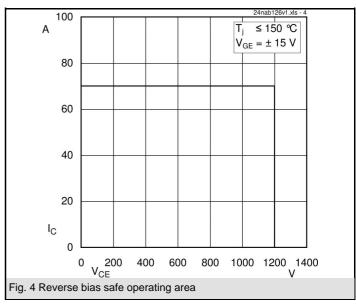
Typical Applications*

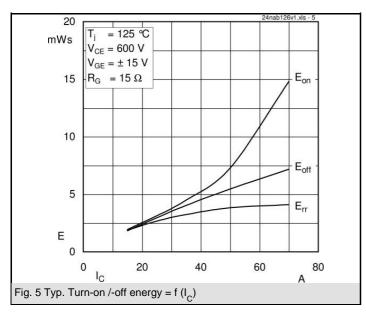
- Inverter up to 19 kVA
- Typical motor power 11 kW

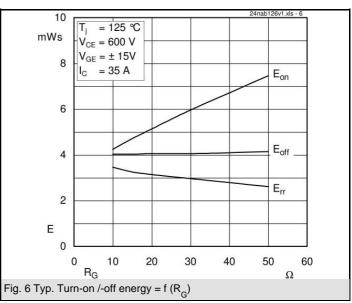

Remarks

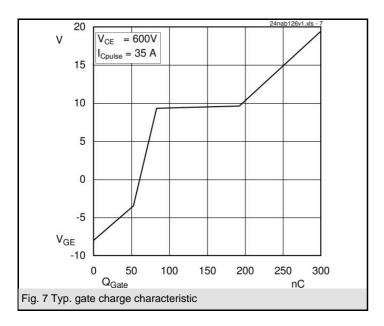

• V_{CEsat} , V_F= chip level value

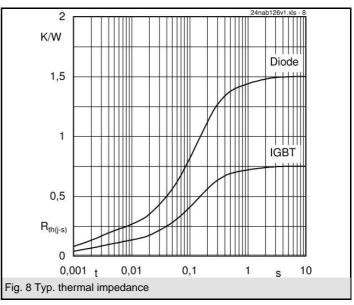


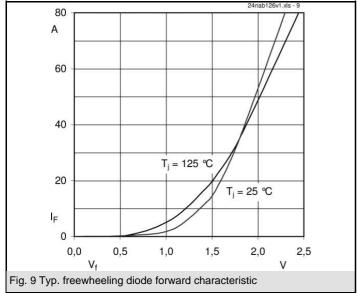

Absolute Maximum Ratings $T_s = 25$ °C, unless otherwise specified								
Symbol	Conditions	Values	Units					
IGBT - Inverter, Chopper								
V_{CES}		1200	V					
I _C	T _s = 25 (70) °C	52 (40)	Α					
I _{CRM}		70	Α					
V_{GES}		± 20	V					
T_j		- 40 + 150	°C					
Diode - Inverter, Chopper								
I _F	$T_s = 25 (70) ^{\circ}C$	38 (29)	Α					
I _{FRM}		70	Α					
T_j		- 40 + 150	°C					
Diode - R	ectifier							
V_{RRM}		1600	V					
I _F	T _s = 70 °C	46	Α					
I _{FSM}	$t_{\rm D}$ = 10 ms, sin 180 °, $T_{\rm i}$ = 25 °C	370	Α					
i²t	$t_{\rm p} = 10 \text{ ms, sin } 180 ^{\circ}, T_{\rm i} = 25 ^{\circ}\text{C}$	680	A²s					
T _j	,	- 40 + 150	°C					
Module	-	-	I					
I _{tRMS}	per power terminal (20 A / spring)	40	Α					
T _{stg}		- 40 + 125	°C					
V _{isol}	AC, 1 min.	2500	V					

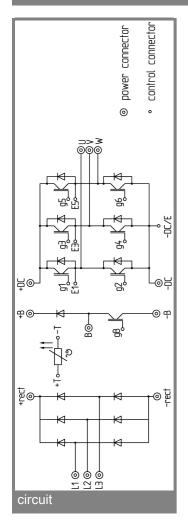

Characteristics		T_s	T _s = 25 °C, unless otherwise specified					
Symbol	Conditions	1	min.	typ.	max.	Units		
IGBT - Inverter, Chopper								
V_{CEsat}	I _{Cnom} = 35 A, T _i = 25 (125) °C			1,7 (2)	2,1 (2,4)	V		
V _{GE(th)}	$V_{GE} = V_{CE}$, $I_C = 1,5 \text{ mA}$		5	5,8	6,5	V		
V _{CE(TO)}	T _j = 25 (125) °C			1 (0,9)	1,2 (1,1)	V		
r _T	T _j = 25 (125) °C			20 (31)	26 (37)	mΩ		
C _{ies}	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$			2,4		nF		
C _{oes}	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$			0,5		nF		
C _{res}	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$			0,3		nF		
$R_{th(j-s)}$	per IGBT			0,75		K/W		
t _{d(on)}	under following conditions			80		ns		
t _r	$V_{CC} = 600 \text{ V}, V_{GE} = \pm 15 \text{ V}$			30		ns		
t _{d(off)}	I _{Cnom} = 35 A, T _j = 125°C			410		ns		
t _f	$R_{Gon} = R_{Goff} = 15 \Omega$			120		ns		
E _{on}	inductive load			4,6		mJ		
E_{off}				4		mJ		
Diode - I	nverter, Chopper							
$V_F = V_{EC}$	I _{Fnom} = 35 A, T _i = 25 (125) °C			1,8 (1,8)	2,1 (2,2)	V		
$V_{(TO)}$	T _i = 25 (125) °C			1 (0,8)	1,1 (0,9)	V		
r _T	$T_{j} = 25 (125) ^{\circ}C$			23 (31)	29 (37)	mΩ		
$R_{th(j-s)}$	per diode			1,5		K/W		
I _{RRM}	under following conditions			43		Α		
Q_{rr}	$I_{Fnom} = 35 \text{ A}, V_{R} = 600 \text{ V}$			7		μC		
E _{rr}	$V_{GE} = 0 \text{ V}, T_{j} = 125 ^{\circ}\text{C}$			3,3		mJ		
	$di_F/dt = 1450 \text{ A/}\mu\text{s}$							
Diode -Rectifier								
V_{F}	I_{Fnom} = 25 A, T_j = 25 °C			1,1		V		
$V_{(TO)}$	T _j = 150 °C			0,8		V		
r_T	T _j = 150 °C			13		mΩ		
$R_{th(j-s)}$	per diode			1,25		K/W		
	ture Sensor							
R _{ts}	3 %, T _r = 25 (100) °C			1000(1670)		Ω		
Mechani	cal Data					•		
w				65		g		
M_s	Mounting torque		2		2,5	Nm		

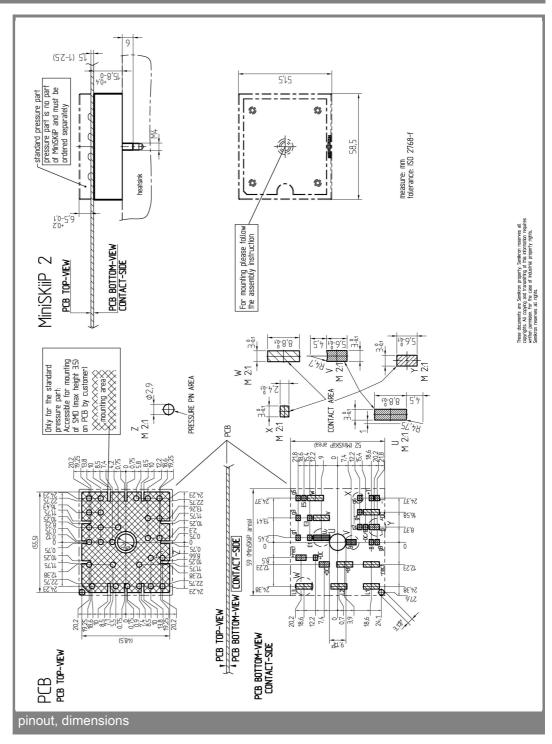












This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

^{*} The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.