

Vishay Siliconix

Power MOSFET

PRODUCT SUMMA	RY	
V _{DS} (V) at T _J max.	560)
R _{DS(on)} (Ω)	$V_{GS} = 10 V$	0.225
Q _g (Max.) (nC)	76	
Q _{gs} (nC)	21	
Q _{gd} (nC)	29	
Configuration	Sing	le

FEATURES

- Low Figure-of-Merit Ron x Qg
- 100 % Avalanche Tested
- High Peak Current Capability
- dV/dt Ruggedness
- Improved t_{rr}/Q_{rr}
- Improved Gate Charge
- High Power Dissipations Capability
- Compliant to RoHS Directive 2002/95/EC

ORDERING INFORMATION	
Package	TO-220AB
Lead (Pb)-free	SiHP18N50C-E3

ABSOLUTE MAXIMUM RATINGS (Tc	= 25 C, uni	ess otherwis	se noted)			
PARAMETER			SYMBOL	LIMIT	UNIT	
Drain-Source Voltage			V _{DS}	500	v	
Gate-Source Voltage			V _{GS}	± 30	v	
Continuous Drain Current (T _{.1} = 150 °C) ^a	V _{GS} at 10 V	T _C = 25 °C	- I _D	18	А	
Continuous Drain Current $(1) = 150^{\circ}$ C) ²	VGS at TO V	T _C = 100 °C		11		
Pulsed Drain Current ^b			I _{DM}	72		
Linear Derating Factor TO-220AB				1.8	W/°C	
Single Pulse Avalanche Energy ^c			E _{AS}	361	mJ	
Maximum Power Dissipation TO-220AB		PD	223	W		
Peak Diode Recovery dV/dt ^d			dV/dt	5	V/ns	
Operating Junction and Storage Temperature Range		T _J , T _{stg}	- 55 to + 150	°C		
Soldering Recommendations (Peak Temperature) ^d for 10 s			300			

Notes

a. Drain current limited by maximum junction temperature.

b. Repetitive rating; pulse width limited by maximum junction temperature.

c. V_{DD} = 50 V, starting T_J = 25 °C, L = 2.5 mH, R_g = 25 Ω , I_{AS} = 17 A.

d. $I_{SD} \leq 18$ A, dl/dt ≤ 380 A/µs, $V_{DD} \leq V_{DS}$, $T_J \leq 150$ °C.

e. 1.6 mm from case.

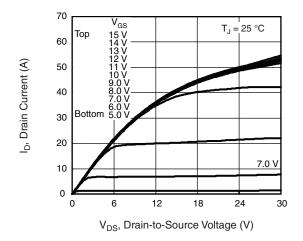
* Pb containing terminations are not RoHS compliant, exemptions may apply

Document Number: 91374 S11-0520-Rev. D, 21-Mar-11 www.vishay.com

Vishay Siliconix

THERMAL RESISTANCE RAT	INGS				
PARAMETER		SYMBOL	TYP.	MAX.	UNIT
Maximum Junction-to-Ambient	TO-220	R _{thJA}	-	62	°C/W
Maximum Junction-to-Case (Drain)	TO-220	R _{thJC}	-	0.56	0,0

PARAMETER	SYMBOL	TES	T CONDITIONS	MIN.	TYP.	MAX.	UNIT
Static							
Drain-Source Breakdown Voltage	V _{DS}	V _{GS}	= 0 V, I _D = 250 μA	500	-	-	V
V _{DS} Temperature Coefficient	$\Delta V_{DS}/T_{J}$	Referenc	e to 25 °C, I _D = 1 mA	-	0.6	-	V/°C
Gate-Source Threshold Voltage (N)	V _{GS(th)}	V _{DS} =	= V _{GS} , I _D = 250 μΑ	3.0	-	5.0	V
Gate-Source Leakage	I _{GSS}		V _{GS} = ± 30 V	-	-	± 100	nA
Zero Gate Voltage Drain Current	I = = =	V _{DS} =	= 500 V, V _{GS} = 0 V	-	-	25	
zero date voltage Drain Current	I _{DSS}	V _{DS} = 400 V	/, V _{GS} = 0 V, T _J = 125 °C	-	-	250	μA
Drain-Source On-State Resistance	R _{DS(on)}	$V_{GS} = 10 V$	I _D = 10 A	-	0.225	0.270	Ω
Forward Transconductance ^a	9 _{fs}	V _{DS}	= 50 V, I _D = 10 A	-	6.4	-	S
Dynamic							
Input Capacitance	C _{iss}		$V_{GS} = 0 V,$	-	2451	2942	
Output Capacitance	C _{oss}		V _{DS} = 25 V,	-	300	360	рF
Reverse Transfer Capacitance	C _{rss}	f = 1.0 MHz		-	26	32	1
Internal Gate Resistance	Rg	f = 1.0 MHz, open drain		-	1.1	-	Ω
Total Gate Charge	Qg			-	65	76	
Gate-Source Charge	Q _{gs}	$V_{GS} = 10 V$	$I_D = 18 \text{ A}, V_{DS} = 400 \text{ V}$	-	21	-	nC
Gate-Drain Charge	Q _{gd}			-	29	-	1
Turn-On Delay Time	t _{d(on)}			-	80	-	
Rise Time	t _r	V _{DD} =	= 250 V, I _D = 18 A	-	27	-	- ns
Turn-Off Delay Time	t _{d(off)}	R _g =	7.5 Ω, V _{GS} = 10 V	-	32	-	
Fall Time	t _f			-	44	-	1
Drain-Source Body Diode Characteristic	s	<u>.</u>					
Continuous Source-Drain Diode Current	I _S	MOSFET sym showing the	bol	-	-	18	
Pulsed Diode Forward Current	I _{SM}	integral reverse p - n junction diode		-	-	72	A
Body Diode Voltage	V _{SD}	T _J = 25 °	C, I _S = 18 A, V _{GS} = 0 V	-	-	1.5	V
Body Diode Reverse Recovery Time	t _{rr}	_		-	503	-	ns
Body Diode Reverse Recovery Charge	Q _{rr}	T _J = 25 °C, $I_F = I_S$, dI/dt = 100 A/µs, $V_B = 35 V$		-	6.7	-	μC
Reverse Recovery Current	I _{RRM}		$100 \text{ A}/\mu\text{s}, \text{ v}_{\text{R}} = 33 \text{ v}$	-	30	-	Α


Note

a. Repetitive rating; pulse width limited by maximum junction temperature.

The information shown here is a preliminary product proposal, not a commercial product datasheet. Vishay Siliconix is not committed to produce this or any similar product. This information should not be used for design purposes, nor construed as an offer to furnish or sell such products.

Vishay Siliconix

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

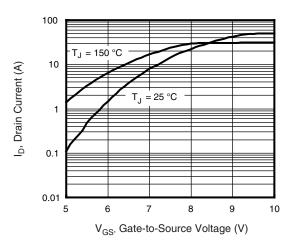


Fig. 3 - Typical Transfer Characteristics

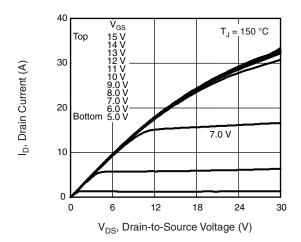


Fig. 2 - Typical Output Characteristics, T_C = 150 °C

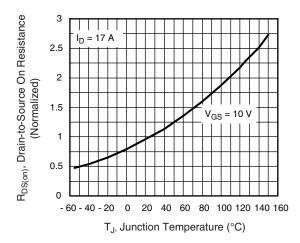


Fig. 4 - Normalized On-Resistance vs. Temperature

Vishay Siliconix

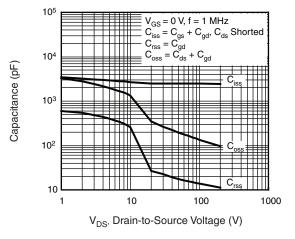


Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage

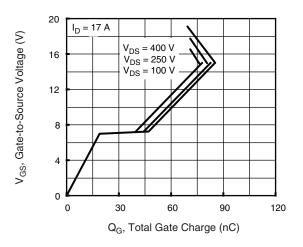


Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage

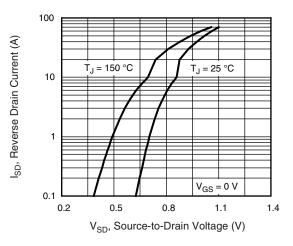


Fig. 7 - Typical Source-Drain Diode Forward Voltage

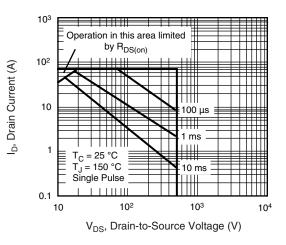


Fig. 8 - Maximum Safe Operating Area

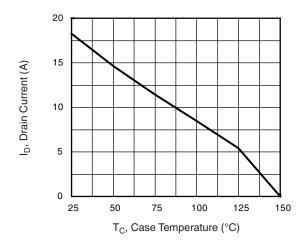
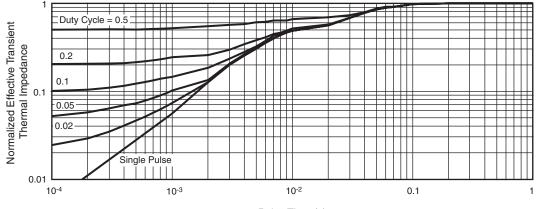



Fig. 9 - Maximum Drain Current vs. Case Temperature

www.vishay.com 4 Document Number: 91374 S11-0520-Rev. D, 21-Mar-11

Vishay Siliconix

Pulse Time (s)

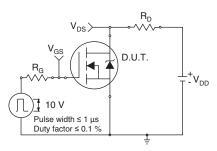


Fig. 11a - Switching Time Test Circuit

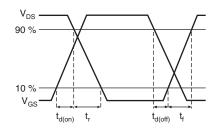


Fig. 11b - Switching Time Waveforms

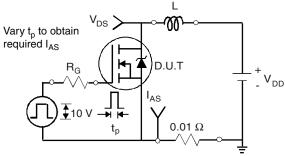


Fig. 12a - Unclamped Inductive Test Circuit

Document Number: 91374 S11-0520-Rev. D, 21-Mar-11

This datasheet is subject to change without notice. THE PRODUCT DESCRIBED HEREIN AND THIS DATASHEET ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

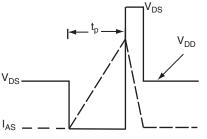


Fig. 12b - Unclamped Inductive Waveforms

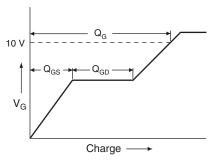


Fig. 13a - Basic Gate Charge Waveform

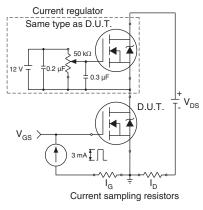


Fig. 13b - Gate Charge Test Circuit

www.vishay.com

Vishay Siliconix

Peak Diode Recovery dV/dt Test Circuit

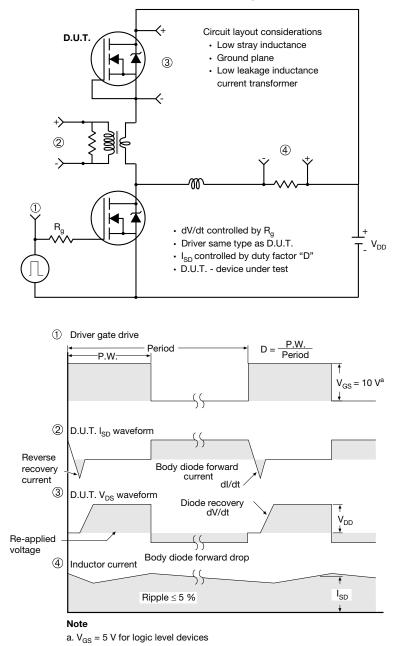
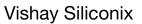
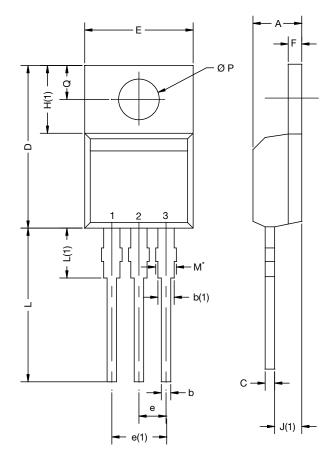



Fig. 14 - For N-Channel


Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?91374.

www.vishay.com 6 Document Number: 91374 S11-0520-Rev. D, 21-Mar-11

www.vishay.com

TO-220-1

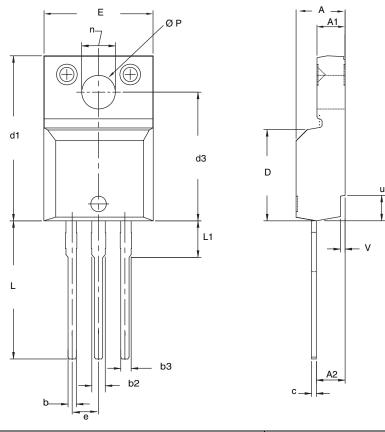
DIM.	MILLIN	IETERS	INCHES		
DIN.	MIN.	MAX.	MIN.	MAX.	
А	4.24	4.65	0.167	0.183	
b	0.69	1.02	0.027	0.040	
b(1)	1.14	1.78	0.045	0.070	
С	0.36	0.61	0.014	0.024	
D	14.33	15.85	0.564	0.624	
E	9.96	10.52	0.392	0.414	
е	2.41	2.67	0.095	0.105	
e(1)	4.88	5.28	0.192	0.208	
F	1.14	1.40	0.045	0.055	
H(1)	6.10	6.71	0.240	0.264	
J(1)	2.41	2.92	0.095	0.115	
L	13.36	14.40	0.526	0.567	
L(1)	3.33	4.04	0.131	0.159	
ØР	3.53	3.94	0.139	0.155	
Q	2.54	3.00	0.100	0.118	
	0364-Rev. C,				

Note

- M^{\star} = 0.052 inches to 0.064 inches (dimension including protrusion), heatsink hole for HVM

	Packag	e Picture	
AS	3E	Xi	'an
		IRF 9510 744K AB	

Revison: 14-Dec-15


1 For technical questions, contact: <u>hvm@vishay.com</u> Document Number: 66542

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

Package Information

Vishay Siliconix

TO-220 FULLPAK (HIGH VOLTAGE)

	MILLI	METERS	INC	HES
DIM.	MIN.	MAX.	MIN.	MAX.
А	4.570	4.830	0.180	0.190
A1	2.570	2.830	0.101	0.111
A2	2.510	2.850	0.099	0.112
b	0.622	0.890	0.024	0.035
b2	1.229	1.400	0.048	0.055
b3	1.229	1.400	0.048	0.055
С	0.440	0.629	0.017	0.025
D	8.650	9.800	0.341	0.386
d1	15.88	16.120	0.622	0.635
d3	12.300	12.920	0.484	0.509
E	10.360	10.630	0.408	0.419
е	2.54	BSC	0.100 BSC	
L	13.200	13.730	0.520	0.541
L1	3.100	3.500	0.122	0.138
n	6.050	6.150	0.238	0.242
ØР	3.050	3.450	0.120	0.136
u	2.400	2.500	0.094	0.098
V	0.400	0.500	0.016	0.020

Notes

1. To be used only for process drawing. 2. These dimensions apply to all TO-220, FULLPAK leadframe versions 3 leads. 3. All critical dimensions should C meet $C_{pk} > 1.33$.

4. All dimensions include burrs and plating thickness.

5. No chipping or package damage.

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.