SAFE RELAY UNIVERSAL SAFETY RELAYS

The safe RELAY safety relays offer customized solutions for the safety of man and machine.

These devices combine excellent technical performance with efficient use in everyday industrial applications. Compact design, flexible use and flexible connection methods are the decisive advantages of these devices.

Depending on the application and the selected device, the safety relays can be used up to PL e / Category 4 (EN ISO 13849-1) or SIL 3 (EN 62061).

VERSATILE APPLICATION OPTIONS

- Emergency stop monitoring
- Monitoring of protective doors and interlocks
- Light curtain monitoring
- Two-hand relay
- Monitoring of valves and limit value switches
- Safe contact expansions

safe RELAY

Safety relays

The simple and safe connection
for every situation.

Further informations about the screw terminal set and the push-in terminal set see page 21.

SNA, SNO, SNS, SNT, SNZ

Basic devices

The basic devices of the SNA, SNO, SNS, SNT and SNZ device families feature a safe internal logic component for the monitoring of the respective safety functions.

SNV

Basic devices with time function

The basic devices of the SNV device families feature a safe internal logic component for the monitoring of the respective safety functions.

In addition, these devices offer timedelayed, safe outputs and a corresponding time setting on the device.

SNE

Contact expansion relays

The contact expansion relays of the SNE device family feature a redundant internal structure and are used for contact multiplication on, for example, basic devices.

OVERVIEW－BASIC DEVICES

Type	$\begin{gathered} \text { SNO } \\ \text { 4083KM } \end{gathered}$	$\begin{gathered} \text { SNO } \\ 4062 \mathrm{~K} / \mathrm{KM} \end{gathered}$	$\begin{gathered} \text { SNO } \\ 4063 K / K M \end{gathered}$	$\begin{gathered} \text { SNA } \\ 4043 K / K M \end{gathered}$	$\begin{gathered} \text { SNA } \\ 4044 K / K M \end{gathered}$	$\begin{gathered} \text { SNA } \\ 4063 K / K M \end{gathered}$	$\begin{gathered} \text { SNA } \\ 4064 K / K M \end{gathered}$
Page	36	38	40	42	42	44	44
	$8_{0} 5^{+\alpha}$	$Q^{N} c^{+k}$	$Q_{e}^{N} c^{N}$	$Q_{0} j^{*}$	$Q_{0} s^{*}$	$Q_{e}^{N} c^{+\alpha}$	$Q_{e}^{N} s^{*}$
			$\stackrel{\leftrightarrow}{\square}$ 豊曲	$\stackrel{\leftrightarrow}{\square}$ 豊曲	$\stackrel{\leftrightarrow}{\square}$ 豊曲	$\stackrel{\leftrightarrow}{\text { ¢ }}$ 曹	$\stackrel{\leftrightarrow}{\square}$ 㻃曲
				$\begin{array}{\|l\|} \hline \text { 名 } \\ \hline \end{array}$	5	名	－ 4
	4					4	4
	$\frac{\boldsymbol{T}}{\mathrm{IN}}$	$\underset{\mathrm{IN}}{\boldsymbol{T}}$		$\frac{\boldsymbol{T}}{\mathbb{I N}}$	$\overbrace{\mathbb{I N}}^{\mathbf{T}}$	$\underset{\mathbb{I N}}{\boldsymbol{T}}$	$\underset{\mathrm{IN}}{\boldsymbol{T}}$
	$\frac{I}{i n} \frac{-}{T}$	$\frac{T}{\text { IN }}$	$\frac{T}{\frac{T}{i n}}$	$\frac{T}{\frac{T}{i n}}$	$\frac{T}{\text { IN }}$	$\frac{T}{\frac{1}{i}}$	$\frac{T}{\frac{T}{i n}}$
		$\frac{\square}{\text { CROSSMON }}$	$\frac{\square}{\text { CROSSMON }}$	$\frac{\square}{\text { CROSSMON }}$		$\frac{4}{\square}$	
	CH 1 Ctsyn. 0,5 CH 2 1,5						
$$	SAFE AUTO－ START RESET	AUTO－ RESET	AUTO－ RESET	AUTO－ RESET	AUTO－ RESET		
	$\begin{gathered} 工_{-} \\ \text {RESET } \end{gathered}$	$\begin{array}{\|c\|c\|} \hline \text { 工_- } & \text { I_ } \\ \text { RESET } \\ \hline \end{array}$	$\begin{array}{\|c\|c\|} \hline 工_{-}-工 & I_{-} \\ \text {RESET } \\ \hline \end{array}$	工_-」	工_工	$\begin{gathered} 工_{-} 7 \\ \text { RESET } \end{gathered}$	$\begin{gathered} 工_{-} \\ \text {RESET } \end{gathered}$
			$\begin{array}{l\|} \mathrm{COMBI}^{\text {COM }} \\ \text { RESET } \end{array}$				
U0000	$\begin{aligned} & \text { SAFE } \\ & \hline \end{aligned}$	$\begin{array}{l\|} s_{A F E} \\ 2 \\ 2 \end{array}$	$\begin{array}{l\|} \hline \text { SAFE } \\ \hline 3 \end{array}$	3	$\begin{array}{\|l\|l\|} \hline \text { SAFE } \\ 4 & 1 \\ \hline \end{array}$	$\begin{array}{l\|} \hline \mathrm{SAFE} \\ \hline \end{array}$	$\begin{array}{l\|} \hline \text { SAFE } \\ 4 \\ \hline 1 \\ \hline \end{array}$
		17					
	MONO FLOP						
Rated voltage DC（V）	24	24	$\begin{aligned} & 12 \\ & 24 \end{aligned}$	24	24	24	24
Rated voltage AC（V）	115－230		$\begin{gathered} 24 \\ 115-120 \\ 230 \end{gathered}$				

${ }^{3)}$ possible only in isolated cases and according to the risk assessment of the machine functions

${ }^{\text {swo } 003 \mathrm{~K}}$	SNo 0102k		sum 4001k	snt ancsk	sN20052k	SN2 102\％
${ }^{46}$	${ }^{48}$	50			${ }_{5}^{6}$	
8020 5^{3}	P） S^{3}	$8{ }^{2} 5^{(t)}$	P\％が	$8{ }^{2} 5^{(t)}$	$8{ }^{2} 55^{(x)}$	8_{6}^{2}
Si゙	SV2	Sb_{3}^{2}	SH_{3}^{2}	Sb_{3}^{2}	Sb_{3}	S\％
首面	宔 ${ }^{\text {面 }}$			宔	＋	
		（®）．© ¢	．	$\frac{1}{10 x}$	did	de
$\stackrel{\text { a }}{\text { m }}$	$\stackrel{5}{*}$	$\frac{-1}{*}$		\％	部	－
F－	F	F		Fix		
		$\frac{m}{4}$		$\frac{m}{4}$	4	4
Amat		anid	成		anaid	
${ }_{\text {cex }}^{\text {cxay }}$	［xat	Rexter				
\cdots	${ }^{\text {min }}$	＂${ }_{4}$	－${ }_{2}$		\cdots	
－ 17		（2C）			， 17	
			漊		$\stackrel{5}{ }$	N
${ }^{24}$	${ }^{24}$	${ }^{24}$	${ }^{24}$	${ }^{24}$	${ }^{24}$	${ }^{24}$
	${ }^{24}$				（tat	${ }_{14530}$

OVERVIEW－BASIC DEVICES WITH TIME FUNCTION

Type	SNV 4063KL	SNV 4063KP	SNV 4074SL	SNV 4076SL	SNV 4274SL	SNV 4074ST
Page	60	62	64	64	66	66
	$Q_{0} 5^{x^{1}}$	$Q_{e} s^{*}{ }^{1+}$	$Q^{4} c^{+k}$	$Q_{e} c^{k}$	$Q_{0} s^{*}$	$8^{2} 5^{*}$
	$S_{3}^{1)}$	S_{3}^{11}				
		$\stackrel{\leftrightarrow}{\square}$ 豊曲		$\stackrel{\leftrightarrow}{\text { ¢ }}$ 典曲	$\stackrel{\leftrightarrow}{\square}$ 豊曲	$\stackrel{\text { ¢ }}{\underline{\text { ¢ }} \text { 㻃 }}$
			$\xrightarrow{\text { MAGNET }} \underset{\sim}{\square}$			
	M	M			$\overbrace{1}$	n
	处知	政	沙多		－ 4	处
		$\frac{\boldsymbol{T}}{\mathbb{I N}}$	$\frac{T}{\mathbb{I N}^{T}}$	$\frac{\boldsymbol{T}}{\mathrm{IN}}$	$\frac{\boldsymbol{T}}{\mathbb{I N}}$	$\frac{\mathrm{T}}{\underline{\text { IN }} \text {－}}$
	$\frac{\text { IN }}{\frac{\text { IN }}{}}$	$\frac{T}{I_{N}}$	$\frac{\square}{+1}$	$\frac{T}{i n}$	$\frac{T}{\frac{T}{1 N}}$	$\frac{\mathrm{IN}}{\frac{1}{\operatorname{IN}}}$
			$\frac{4}{\square \cdot \frac{4}{\text { CROSSMON }}}$	$\frac{1}{C R}$		
			CH 1 tsync CH 2			$\frac{\mathrm{CH}^{\text {tsyn }}}{\text { CH2 }} 1,0$
$$	AUTO－ RESET	AUTO－ RESET	SAFE AUTO－ START RESET	SAFE AUTO－ START RESET	SAFE AUTO－ START RESET	SAFE AUTO－ START RESET
	$$	$\begin{array}{\|c\|c\|} \hline 工 _工 & I_{-} \\ \text {RESET } \\ \text { RESET } \\ \hline \end{array}$	$\begin{array}{\|l\|l\|} \hline I_{-}- & I_{-} \\ \hline \text { RESET } & \\ \hline \end{array}$	$\begin{array}{\|c\|c\|} \hline I_{-}-工 & I_{-} _ \\ \hline \text { RESET } \\ \hline \end{array}$	$\begin{array}{\|c\|c\|} \hline \text { I_SET }_{\text {RESET }} & \text { 工_7 } \\ \hline \text { RESET } \\ \hline \end{array}$	$\begin{array}{\|c\|c\|} \hline 工_{-}-I_{-} _ \\ \text {RESET } \\ \hline \end{array}$
	COMBI RESET					
$\begin{aligned} & \text { N } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		$\begin{array}{c\|c\|} \hline \text { SAAFE } \\ 2 & 1 \\ \hline \end{array}$		$\begin{array}{l\|l\|} \hline \text { SAFE } \\ 3 & { }^{\text {SAFE }} \\ \hline \end{array}$		${ }_{\text {Safe }}^{\text {Safer }}$
			2724		27 2\％	17
	$\underbrace{}_{\text {OFF－DELAY }}$	$\underset{\text { ON－DELAY }}{(L)}$	$\underbrace{L}_{\text {OFF－DELAY }}$	$\underbrace{}_{\text {OFF－DELAY }}$	$\bigcup_{\text {OFF－DELAY }}$ RE－	$\varlimsup_{\text {ON－DELAY }}$
Rated voltage DC（V）	24	24	24	24	24	24
Rated voltage AC（V）			115－230	115－230	115－230	115－230

[^0]CONTACT EXPANSION RELAYS

SNO 4083KM

MONITORING OF EMERGENCY STOP, SAFETY GATES AND LIGHT BARRIERS

Δ c UL US CC

APPLICATIONS

- Protection of people and machinery
- Monitoring of emergency stop applications
- Monitoring of safety gates
- Monitoring of light barriers
- Up to PL e / Categorie 4 (EN ISO 13849-1)
- Up to SILcl 3 (EN 62061)

FEATURES

- Stop Category 0 according to EN 60204-1
- Single-channel or two-channel control
- Two-channel control with NC/NC or NC/NO
- Manual or automatic start
- SafeStart
- Cross monitoring
- Synchronous time monitoring for two-channel control
- 3 enabling current path / 1 signalling current path
- Universal application - The two-channel control of the device is carried out by either an NC/NC or an NC/NO combination of the safety sensor.
In the case of two-channel control of the device, a synchronous time is automatically monitored between the two channels.
- SafeStart function - When the device is used with a manual start, the reset input is automatically monitored for a rising and falling signal edge.
A manual reset signal is only accepted if the control inputs of the device are activated by the safe transducer (e.g. emergency stop button) during the entire activation procedure.
- Monoflop function - This function is integrated into the device and prevents device interlocking under all circumstances. This is a decisive advantage in applications where very short interruptions of the safety-related signals can occur, or in the case of transducers with bouncing contacts or safe optical sensors (BWS), for example.
- Simple diagnosis - The device features an intelligent display system that shows the user the different operating modes of the device in its different applications. This means, for example, that when the control inputs are closed and manual start has been selected, a reset signal is displayed, which has not yet been given. Fault states in the control (e.g. synchronous time exceeded or a short-circuit in two-channel control) are also signaled to the user via a blinking code.

OVERVIEW OF DEVICES | PART NUMBERS

Type	Rated voltage	Synchr. Time	Terminals	Part no.	P.U.
SNO 4083KM-A	24 V DC	1.5 s	Screw terminals, pluggable	R1.188.3580.0	1
SNO 4083KM-A	115-230 V AC	1.5 s	Screw terminals, pluggable	R1.188.3590.0	1
SNO 4083KM-C	24 V DC	1.5 s	Push-in terminals, pluggable	R1.188.3600.0	1
SNO 4083KM-C	115-230 V AC	1.5 s	Push-in terminals, pluggable	R1.188.3610.0	1
SNO 4083KM-A	24 V DC	0.5 s	Screw terminals, pluggable	R1.188.3830.0	1
SNO 4083KM-A	115-230 V AC	0.5 s	Screw terminals, pluggable	R1.188.3840.0	1
SNO 4083KM-C	24 V DC	0.5 s	Push-in terminals, pluggable	R1.188.3850.0	1
SNO 4083KM-C	115-230 V AC	0.5 s	Push-in terminals, pluggable	R1.188.3860.0	1

TECHNICAL DATA

Function	Emergency stop relay
Function display	3 LEDs, green
Power supply circuit	
Rated voltage U_{N} A1, A2	24 V DC/ 115-230 V AC
Rated consumption 24 V DC	1.6 W
115-230 V AC	1.8 W / 4.0 VA
Rated frequency	$50-60 \mathrm{~Hz}$
Operating voltage range U_{B}	0.85-1.1 $\times \mathrm{U}_{\mathrm{N}}$
Electrical isolation supply circuit - control circuit	yes (at $\left.\mathrm{U}_{\mathrm{N}}=115-230 \mathrm{~V} \mathrm{AC}\right)$
Control circuit	
Rated output voltage S11/S21	22.5 VDC
Input current / peak current S12, S22	$25 \mathrm{~mA} / 100 \mathrm{~mA}$
S14, S34	$3 \mathrm{~mA} / 5 \mathrm{~mA}$
Response time $\mathrm{t}_{\text {A1 }} / \mathrm{t}_{\text {A2 }}$	250 ms
Minimum ON time $\mathrm{t}_{\text {M }}$	60 ms
Recovery time $\mathrm{tw}_{\text {w }}$	120 ms
Release time t_{R}	$<35 \mathrm{~ms}$
Synchronous time ts	$0.5 \mathrm{~s} / 1.5 \mathrm{~s}$
Permissable test pulse time $\mathrm{t}_{\text {P }}$	$<0,8 \mathrm{~ms}$
Max. resistivity, per channel ${ }^{11} \quad 24 \mathrm{~V}$ DC	$\leq\left(5+\left(1.176 \times U_{B} / U_{N}-1\right) \times 100\right) \Omega$
115-230 V AC	$\leq 12 \Omega$
Output circuit	
Enabling paths 13/14,23/24, 33/34	normally open contact
Signaling paths 41/42	normally closed contact
Contact assignment	forcebly guided
Contact type	Ag-alloy, gold-plated
Rated switching voltage enabling / signaling path	230 V AC
Max. thermal current $I_{\text {th }}$ enabling / signaling path	$6 \mathrm{~A} / 2 \mathrm{~A}$
Max. total current I^{2} of all current path $\quad\left(\mathrm{Tu}=55^{\circ} \mathrm{C}\right) /\left(\mathrm{Tu}=65^{\circ} \mathrm{C}\right)$	$25 A^{2} / 9 A^{2}$
Application category (NO) AC-15	$U_{\text {e }} 230 \mathrm{~V}, \mathrm{l}$ e 5 A
DC-13	Ue $24 \mathrm{~V}, \mathrm{l}$ e 5 A
Short-circuit protection (NO), lead fuse / circuit breaker	6 A class gG / melting integral < $100 \mathrm{~A}^{2}$ S
Mechanical life	10^{7} switching cycles
General data	
Creepage distances and clearances between the circuits	EN 60664-1
Protection degree according to EN 60529 (housing / terminals)	IP40 / IP20
Ambient temperature / storage temperature	$-25^{\circ} \mathrm{C}-+65^{\circ} \mathrm{C} /-25^{\circ} \mathrm{C}-+75^{\circ} \mathrm{C}$
Wire ranges screw terminals, fine-stranded / solid	$1 \times 0.2 \mathrm{~mm}^{2}-2.5 \mathrm{~mm}^{2} / 2 \times 0.2 \mathrm{~mm}^{2}-1.0 \mathrm{~mm}^{2}$
fine-stranded with ferrules	$1 \times 0.25 \mathrm{~mm}^{2}-2.5 \mathrm{~mm}^{2} / 2 \times 0.25 \mathrm{~mm}^{2}-1.0 \mathrm{~mm}^{2}$
Permissible torque	$0.5-0.6 \mathrm{Nm}$
Wire ranges push-in terminals	$1 \times 0,25 \mathrm{~mm}^{2}-1.5 \mathrm{~mm}^{2}$
Weight $24 \mathrm{VAC} / \mathrm{DC}$ device / AC device	0.2 kg
Standards	EN ISO 13849-1, EN 62061, EN 81-20/50, EN 50156-1, EN 61511
Approvals	TÜV, cULus, CCC, GL

SNO 4062K/KM

MONITORING OF EMERGENCY STOP, SAFETY GATES AND LIGHT BARRIERS

-(UL) us (CCC

FUNCTION

SNO 4062K

The device is a two-channel switching device for emergency stop applications with self-monitoring on each ON-OFF cycle. It complies with EN 60204-1 and is equipped with forcibly guided relays.

BASIC FUNCTION:

With supply voltage applied to terminals A1/A2 and the safety inputs closed, pressing the reset button closes the enabling current paths (manual start). When the safety inputs are opened/ de-energized the enabling current paths will open.

- Manual start When the safety inputs are closed, a button is used to open reset input S34 (triggering with falling edge) or to close reset input S35 (triggering with rising edge).
- Automatic start Reset input S35 is connected to S33. The device starts with the rising edge of the signal on safety input S12.

APPLICATIONS

- Protection of people and machinery
- Monitoring of emergency stop applications
- Monitoring of safety gates
- Monitoring of light barriers
- Up to PL e / Category 4 (EN ISO 13849-1)
- Up to SILcl 3 (EN 62061)

FEATURES

- Stop Category 0 according to EN 60204-1
- Reset button monitoring
- Manual or automatic start

Single-channel or two-channel control

- Cross monitoring
- 2 enabling current paths, 1 signal current path

SNO 4062KM

The function of this device corresponds to that of the SNO 4062 K without synchrocheck. The device is suitable for connecting to light curtains for Type 4 (EN 61496-1) and connecting to short-circuit forming 4-wire safety mats, switching strips or switching edges (without monitoring resistance).

- Safety mats The device must be operated with two channels and cross monitoring. If there is resistance $<50 \Omega$ / channel and a short circuit between the channels (S11/S12 and S21/S22) the enabling paths open and the SUPPLY LEDs flashes.
- Light curtain for Type 4 (EN 61496-1) The device will be operated with two channels and without cross monitoring, if the light curtain connected to the OSSD detects a shunt fault on its own.

For applications with tactile operating modes (rapid ON-OFF cycles, for example with manual supply) we recommend using SNO 4062KM.

CIRCUIT DIAGRAM

SNO 4062K /KM

OVERVIEW OF DEVICES | PART NUMBERS

Type	Rated voltage	Terminals	Part no.	
SNO 4062K-A	$24 \mathrm{VAC} / D C$	Screw terminals, pluggable	R1.188.0700.2	1
SNO 4062KM-A	$24 \mathrm{VAC} / D C$	Screw terminals, pluggable	R1.188.0720.2	1
SNO 4062K-C	$24 \mathrm{VAC} / D C$	Push-in terminals, pluggable	R1.188.2000.0	1

SNO 4063K/KM

MONITORING OF EMERGENCY STOP, SAFETY GATES AND LIGHT BARRIERS

FUNCTION

SNO 4063K

The device is a two-channel switching device for emergency stop applications with self-monitoring on each ON-OFF cycle. It complies with EN 60204-1 and is equipped with forcibly guided relays.
After supply voltage has been applied to the A1/A2 terminals and the safety inputs have been closed, pressing the reset button closes the enabling current paths (manual start). When the safety inputs are opened/de-energized the enabling current paths will open.

- Manual start When the safety inputs are closed, a button is used to open reset input S34 (triggering with falling edge) or to close reset input S35 (triggering with rising edge).
- Automatic start Reset input S35 is connected to S33. The device starts with the rising edge of the signal on safety input S12.

APPLICATIONS

- Protection of people and machinery
- Monitoring of emergency stop applications
- Monitoring of safety gates
- Monitoring of light barriers
- Up to PL e / Category 4 (EN ISO 13849-1)
- Up to SIL cl 3 (EN 62061)

FEATURES

- Stop Category 0 according to EN 60204-1
- Manual or automatic start
- Cross monitoring
- Single-channel or two-channel control
- 3 enabling current paths

SNO 4063KM

The function of this device corresponds to that of the SNO 4063K. The device is suitable for connecting to light curtains for Type 4 (EN 61496-1) and to short-circuit forming 4-wire safety mats, switching strips or switching edges (without monitoring resistance).

- Safety mats The device must be operated with two channels and cross monitoring. If there is resistance $<50 \Omega /$ channel and a short circuit between the channels (S11/S12 and S21/S22) the enabling paths open and the SUPPLY LEDs flash.
- Light curtain for Type 4 (EN 61496-1) The device will be operated with two channels and without cross monitoring, if the light curtain connected to the OSSD detects a shunt fault on its own.

For applications with tactile operating modes (rapid ON-OFF cycles, for example at manual supply) we recommend the use of SNO 4063KM

CIRCUIT DIAGRAM

SNO 4063K/KM
24 V AC/DC

115-120 V AC / 230 V AC

OVERVIEW OF DEVICES | PART NUMBERS

Type	Rated voltage	Terminals	Part no.	P.U.
SNO 4063K-A	12 VDC	Screw terminals, pluggable	R1.188.1120.0	1
	$24 \mathrm{VAC} / \mathrm{DC}$	Screw terminals, pluggable	R1.188.0990.0	1
	115-120 V AC	Screw terminals, pluggable	R1.188.1000.0	1
	230 V AC	Screw terminals, pluggable	R1.188.1010.0	1
SNO 4063K-C	$24 \mathrm{VAC} / \mathrm{DC}$	Push-in terminals, pluggable	R1.188.2450.0	1
SNO 4063KM-A	$24 \mathrm{VAC} / \mathrm{DC}$	Screw terminals, pluggable	R1.188.1280.0	1

TECHNICAL DATA

Function		Emergency stop relay
Function display		3 LEDs, green
Power supply circuit		
Rated voltage U_{N}	A1, A2	$24 \mathrm{~V} \mathrm{AC} / \mathrm{DC}, 115-120 \mathrm{VAC}, 230 \mathrm{VAC}$
Rated consumption	24 V DC (K / KM)	2.0 W / 2.1 W
	115-120 V AC, 230 VAC	2.4 W/4.4 VA
Rated frequency		$50-60 \mathrm{~Hz}$
Operating voltage range U_{B}		0.85-1.1 $\times \mathrm{U}_{\mathrm{N}}$
Electrical isolation supply circuit - control	circuit	yes (at $\mathrm{U}_{\mathrm{N}}=115-230 \mathrm{VAC}, 230 \mathrm{VAC}$)
Control circuit		
Rated output voltage	S11/S21	22 VDC
Input current / peak current	S12/S33, S31/S22	$40 \mathrm{~mA} / 100 \mathrm{~mA}$
	S34, S35	$5 \mathrm{~mA} / 50 \mathrm{~mA}$
Response time $\mathrm{t}_{\text {A1 }} / \mathrm{t}_{\mathrm{A} 2}$		$40 \mathrm{~ms} / 600 \mathrm{~ms}$
Minimum ON time t_{M}		50 ms
Recovery time $\mathrm{t}_{\text {w }}$		100 ms
Release time t_{R}		$<25 \mathrm{~ms}$
Synchronous timets		$200 \mathrm{~ms}(\mathrm{CH} 1 \rightarrow \mathrm{CH} 2)$
Permissable test pulse time top		$<1 \mathrm{~ms}$
Max. resistivity, per channel ${ }^{\text {1) }}$	$24 \mathrm{VAC} / \mathrm{DC}$	$\leq\left(5+\left(1.176 \times U_{B} / U_{N}-1\right) \times 100\right) \Omega$
	115-120 V AC, 230 V AC	$\leq\left(5+\left(1.176 \times U_{B} / U_{N}-1\right) \times 100\right) \Omega$
Output circuit		
Enabling paths	13/14, 23/24, 33/34	normally open contact
Contact assignment		forcebly guided
Contact type		Ag-alloy, gold-plated
Rated switching voltage	enabling path	230 V AC
Max. thermal current $l_{\text {th }}$	enabling path	6 A
Max. total current I^{2} of all current path	($\mathrm{Tu}=55^{\circ} \mathrm{C}$)	$9 A^{2}$
Application category (NO)	AC-15	$\mathrm{U}_{\mathrm{e}} 230 \mathrm{~V}, 1 \mathrm{l} 3 \mathrm{~A}$
	DC-13	$\mathrm{U}_{\mathrm{e}} 24 \mathrm{~V}, \mathrm{l}$ e 2.5 A
Short-circuit protection (NO), lead fuse / circuit breaker		6 A class gG / melting integral < $100 \mathrm{~A}^{2} \mathrm{~s}$
Mechanical life		10^{7} switching cycles
General data		
Creepage distances and clearances between the circuits		EN 60664-1
Protection degree according to EN 60529 (housing / terminals)		IP40 / IP20
Ambient temperature / storage temperature		$-25^{\circ} \mathrm{C}-+55^{\circ} \mathrm{C} /-25^{\circ} \mathrm{C}-+75^{\circ} \mathrm{C}$
Wire ranges screw terminals,	fine-stranded / solid	$1 \times 0.2 \mathrm{~mm}^{2}-2.5 \mathrm{~mm}^{2} / 2 \times 0.2 \mathrm{~mm}^{2}-1.0 \mathrm{~mm}^{2}$
	fine-stranded with ferrules	$1 \times 0.25 \mathrm{~mm}^{2}-2.5 \mathrm{~mm}^{2} / 2 \times 0.25 \mathrm{~mm}^{2}-1.0 \mathrm{~mm}^{2}$
Permissible torque		$0.5-0.6 \mathrm{Nm}$
Wire ranges push-in terminals		$1 \times 0.25 \mathrm{~mm}^{2}-1-5 \mathrm{~mm}^{2}$
Weight	24 V AC/DC device / AC device	$0-21 \mathrm{~kg} / 0-25 \mathrm{~kg}$
Standards		EN ISO 13849-1, EN 62061
Approvals		DGUV, cULus, CCC
${ }^{1)}$ If two-channel devices are installed as	ingle channel, the value is halve	

SNA 4043K/KM/KE, SNA 4044K/KM

MONITORING OF EMERGENCY STOP, SAFETY GATES AND LIGHT BARRIERS

(LO) © ©

FUNCTION

Emergency stop and safety gate monitor The safety switching devices of our SNA product line are used to monitor safety sensors (emergency stop buttons, safety gate switches, etc.), feature a large number of safety switching contacts (3 NO contacts/1 NC contact or 4 NO contacts) with a total width of only 22.5 mm at a constant current of up to 8 A . They can be implemented in the extended temperature range up to $65^{\circ} \mathrm{C}$.

APPLICATIONS

- Protection of people and machinery
- Monitoring of emergency stop applications
- Monitoring of safety gates
- Monitoring of light barriers
- Up to PL e / Category 4 (EN ISO 13849-1)
- Up to SIL ${ }_{c l} 3$ (EN 62061)

FEATURES

- Stop Category 0 according to EN 60204-1
- Single-channel or two-channel control
- Automatic start
- Manual reset without monitoring
- Cross monitoring
- 3 to 4 enabling current paths
- Automatic start - Reset input S34 is connected to safety input S11. To monitor external contact blocks (EDM), their NC contacts must be connected in series between S34 and S11.
- Manual start without monitoring - Reset input S34 is connected to safety input S11 via a RESET button. To monitor external contact blocks (EDM), their NC contacts must be connected to the RESET button in series.
- Monitoring of light curtains - The KM device types are especially suitable for the monitoring of very fast tactile switching operations, for example in safety light curtain applications. Very short switch-off procedures of a few milliseconds are detected reliably and lead to the switching off of the internal relays.

CIRCUIT DIAGRAM

OVERVIEW OF DEVICES | PART NUMBERS

Type	Rated voltage	Terminals	Part no.	P.U.
SNA 4043K-A	$24 \mathrm{VAC} / \mathrm{DC}$	Screw terminals, pluggable	R1.188.1810.0	1
SNA 4043K-A	115-120 V AC	Screw terminals, pluggable	R1.188.1830.0	1
SNA 4043K-A	230 VAC	Screw terminals, pluggable	R1.188.1840.0	1
SNA 4043K-C	$24 \mathrm{VAC} / \mathrm{DC}$	Push-in terminals, pluggable	R1.188.1940.0	1
SNA 4043KM-A	$24 \mathrm{VAC} / \mathrm{DC}$	Screw terminals, pluggable	R1.188.3250.0	1
SNA 4043KM-C	$24 \mathrm{VAC} / \mathrm{DC}$	Push-in terminals, pluggable	R1.188.3400.0	1
SNA 4043KE-A	AC/DC 24 V	Screw terminals, pluggable	R1.188.3810.0	1
SNA 4043KE-C	AC/DC 24 V	Push-in terminals, pluggable	R1.188.3820.0	1
SNA 4044K-A	$24 \mathrm{VAC} / \mathrm{DC}$	Screw terminals, pluggable	R1.188.1860.0	1
SNA 4044K-A	115-120 V AC	Screw terminals, pluggable	R1.188.1880.0	1
SNA 4044K-A	230 V AC	Screw terminals, pluggable	R1.188.1890.0	1
SNA 4044K-C	$24 \mathrm{VAC} / \mathrm{DC}$	Push-in terminals, pluggable	R1.188.1960.0	1
SNA 4044KM-A	$24 \mathrm{VAC} / \mathrm{DC}$	Screw terminals, pluggable	R1.188.1480.0	1
SNA 4044KM-C	$24 \mathrm{VAC} / \mathrm{DC}$	Push-in terminals, pluggable	R1.188.3410.0	1

TECHNICAL DATA

SNA 4063K/KM, SNA 4064K/KM

MONITORING OF EMERGENCY STOP, SAFETY GATES AND LIGHT BARRIERS

FUNCTION

After the supply voltage is applied to terminals A1/A2 and the safety inputs are closed, the enabling current paths (NO contacts) are closed and the signal current path (NC contact) is opened by pressing the reset button (manual start with monitoring). When the safety inputs are opened/de-energized, the enabling current paths (NO contacts) are opened immediately.

CIRCUIT DIAGRAM

SNA 4063K/KM

APPLICATIONS

- Monitoring of emergency stop applications
- Monitoring of safety gates
- Monitoring of light barriers
- Up to PL e / Category 4 (EN ISO 13849-1)
- Up to SILcl 3 (EN 62061)

FEATURES

- Stop Category 0 according to EN 60204-1
- Single-channel or two-channel control
- Manual reset with monitoring
- Cross monitoring
- 3 to 4 enabling current paths
- Manual start with monitoring - Reset input S34 is connected to safety input S11 via a RESET button. To monitor external contact blocks (EDM), their NC contacts must be connected in series to the RESET button.
- Monitoring of light curtains - The KM device types are especially suitable for the monitoring of very fast tactile switching operations, for example in safety light curtain applications. Very short switch-off procedures of a few milliseconds are detected reliably and lead to the switching off of the internal relays.

SNA 4064K/KM

OVERVIEW OF DEVICES | PART NUMBERS

Type	Rated voltage	Terminals	Part no.	P.U.
SNA 4063K-A	$24 \mathrm{VAC} / \mathrm{DC}$	Screw terminals, pluggable	R1.188.1440.0	1
SNA 4063K-A	115-120 V AC	Screw terminals, pluggable	R1.188.1450.0	1
SNA 4063K-A	230 VAC	Screw terminals, pluggable	R1.188.1460.0	1
SNA 4063K-C	$24 \mathrm{VAC} / \mathrm{DC}$	Push-in terminals, pluggable	R1.188.1950.0	1
SNA 4063KM-A	$24 \mathrm{VAC} / \mathrm{DC}$	Screw terminals, pluggable	R1.188.3290.0	1
SNA 4063KM-C	$24 \mathrm{VAC} / \mathrm{DC}$	Push-in terminals, pluggable	R1.188.3420.0	1
SNA 4064K-A	$24 \mathrm{VAC} / \mathrm{DC}$	Screw terminals, pluggable	R1.188.1900.0	1
SNA 4064K-A	115-120 V AC	Screw terminals, pluggable	R1.188.1920.0	1
SNA 4064K-A	230 V AC	Screw terminals, pluggable	R1.188.1930.0	1
SNA 4064K-C	$24 \mathrm{VAC} / \mathrm{DC}$	Push-in terminals, pluggable	R1.188.1970.0	1
SNA 4064KM-A	$24 \mathrm{VAC} / \mathrm{DC}$	Screw terminals, pluggable	R1.188.3360.0	1
SNA 4064KM-C	$24 \mathrm{VAC} / \mathrm{DC}$	Push-in terminals, pluggable	R1.188.3430.0	1

TECHNICAL DATA

SNO 4003K

MONITORING OF EMERGENCY STOP AND SAFETY GATES

©(1)us © (CC)

FUNCTION

The device is a single-channel switching device for emergency stop applications with self-monitoring on each ON-OFF cycle. It complies with EN 60204-1 and is equipped with forcibly guided relays.

The device has either two Y2 reset inputs (without reset monitoring) or two Y 3 reset inputs (with reset monitoring). The K1 and K 2 relays are actuated eitherautomatically (bridge Y1 Y2) or after the reset button (on Y1 Y3) has been pressed. They become self-locking through their own contacts, if there is an electrical connection between terminal A1 and the supply voltage (emergency stop button, position switches).

APPLICATIONS

- Protection of people and machinery
- Monitoring of emergency stop applications
- Monitoring of safety gates
- Up to PL d / Category 3 (EN ISO 13849-1)*
- Up to SILcl 2 (EN 62061)*

FEATURES

- Stop Category 0 according to EN 60204-1
- Single-channel or two-channel control
- Manual or automatic start
- 3 enabling current paths, 1 signal current path
- Feedback loop for monitoring external contactors
* PLe contact expansion
\square

After this switch-on phase the enabling current paths are closed and the signaling current path is open.
If the electrical connections between terminal A1 and the supply voltage are interrupted, the enabling current paths open and the signaling current path closes. The energized state (self-locking) of the two channels is indicated by a green LED K1, K2. The second green LED indicates that supply voltage has been applied. The set-up of an emergency stop facility after stop Category 0 (EN 60204-1) is possible.

CIRCUIT DIAGRAM

OVERVIEW OF DEVICES | PART NUMBERS

Type	Rated voltage	Terminals	Part no.	P.U.
SNO 4003K-A	$24 \mathrm{VAC} / \mathrm{DC}$	Screw terminals, pluggable	R1.188.0500.1	1
	$115-120$ V AC	Screw terminals, pluggable	R1.188.0900.1	1
SNO 4003K-C	230 VAC	Screw terminals, pluggable	R1.188.0910.1	1
	$24 \mathrm{VAC} / \mathrm{DC}$	Push-in terminals, pluggable	R1.188.1990.0	1
	Push-in terminals, pluggable	R1.188.4000.0	1	
	Push-in terminals, pluggable	R1.188.4010.0	1	

TECHNICAL DATA

Function	Emergency stop relay
Function display	2 LEDs, green
Power supply circuit	
Rated voltage U_{N} A1, A2	24 V AC/DC / 115-120 V AC / 230 V AC
Rated consumption 24 V DC	1.3 W
115-120 V AC, 230 VAC	2.2 W / 3.9 VA
Rated frequency	$50-60 \mathrm{~Hz}$
Operating voltage range U_{B}	0.85-1.1 $\times \mathrm{U}_{\mathrm{N}}$
Electrical isolation supply circuit - control circuit	yes (at $\mathrm{U}_{\mathrm{N}}=115-120 \mathrm{VAC}, 230 \mathrm{~V} \mathrm{AC}$)
Control circuit	
Rated output voltage Y1	24 VDC
Input current / peak current Y2, Y3	$90 \mathrm{~mA} / 1500 \mathrm{~mA}$
Response time $\mathrm{t}_{\text {A1 }} / \mathrm{t}_{\text {A2 }}$	60 ms
Minimum ON time $\mathrm{t}_{\text {M }}$ (Manueller Start)	60 ms
Recovery time $\mathrm{t}_{\text {w }}$	200 ms
Release time t_{R}	60 ms
Max. resistivity 24V AC/DC	$\leq\left(2.5+\left(1.176 \times U_{B} / U_{N}-1\right) \times 50\right) \Omega$
115-120 V AC, 230 V AC	$\leq\left(7.5+\left(1.176 \times U_{B} / U_{N}-1\right) \times 150\right) \Omega$
Output circuit	
Enabling paths 13/14, 23/24,33/34	
Signaling paths 41/42	normally closed contact
Contact assignment	forcebly guided
Contact type	Ag-alloy, gold-plated
Rated switching voltage enabling / signaling path	230 V AC
Max. thermal current $\mathrm{t}_{\text {th }}$ enabling / signaling path	$8 \mathrm{~A} / 5 \mathrm{~A}$
Max. total current 1^{2} of all current path $\quad\left(\mathrm{Tu}=55^{\circ} \mathrm{C}\right)$	$9 \mathrm{~A}^{2}$
Application category (NO) AC-15	Ue $230 \mathrm{~V}, \mathrm{l}$ e 5 A
DC-13	$\mathrm{U}_{\mathrm{e}} 24 \mathrm{~V}, \mathrm{l}$ e 5 A
Short-circuit protection (NO), lead fuse / circuit breaker	6 A class gG / melting integral < $100 \mathrm{~A}^{2}$ S
Mechanical life	10^{7} switching cycles
General data	
Creepage distances and clearances between the circuits	EN 60664-1
Protection degree according to EN 60529 (housing / terminals)	IP40 / IP20
Ambient temperature / storage temperature	$-25^{\circ} \mathrm{C}-+55^{\circ} \mathrm{C} /-25^{\circ} \mathrm{C}-+75^{\circ} \mathrm{C}$
Wire ranges screw terminals, fine-stranded / solid	$1 \times 0.2 \mathrm{~mm}^{2}-2.5 \mathrm{~mm}^{2} / 2 \times 0.2 \mathrm{~mm}^{2}-1.0 \mathrm{~mm}^{2}$
fine-stranded with ferrules	$1 \times 0.25 \mathrm{~mm}^{2}-2.5 \mathrm{~mm}^{2} / 2 \times 0.25 \mathrm{~mm}^{2}-1.0 \mathrm{~mm}^{2}$
Permissible torque	$0.5-0.6 \mathrm{Nm}$
Wire ranges push-in terminals	$1 \times 0.25 \mathrm{~mm}^{2}-1.5 \mathrm{~mm}^{2}$
Weight $24 \mathrm{VAC} / \mathrm{DC}$ device / AC device	$0.20 \mathrm{~kg} / 0.25 \mathrm{~kg}$
Standards	EN ISO 13849-1, EN 62061
Approvals	DGUV, cULus, CCC

SNO 1012K

MONITORING OF EMERGENCY STOP AND SAFETY GATES

(ILL) Us CCC

FUNCTION

After the operating voltage ($\llcorner+/ L 1$) is applied via an unactuated emergency stop button or safety gate contact on A1 and $A 2$, the device can be switched on via a Y1/Y2-connected reset button. When the device is on, the internal relays K1 and K2 are energized and the enabling current paths $13 / 14$ and $23 / 24$ are closed. When the emergency stop button or the safety gate contact is actuated, the current supply of the internal relays is interrupted and the enabling current paths are opened.

APPLICATIONS

- Protection of people and machinery
- Monitoring of emergency stop applications
- Monitoring of safety gates
- Up to PL d / Category 3 (EN ISO 13849-1)
- Up to SIL 2 (EN 62061)

FEATURES

- Stop Category 0 according to EN 60204-1
- Single-channel or two-channel control
- Manual or automatic start
- 2 enabling current paths
- Check of external contactors (EDM)
- Compact design

CIRCUIT DIAGRAM

SNO 1012K

OVERVIEW OF DEVICES | PART NUMBERS

Type	Rated voltage	Terminals	Part no.	
SNO 1012K-A	$24 \mathrm{VAC} / D C$	Screw terminals, pluggable	R1.188.3740.0	1
SNO 1012K-C	$24 \mathrm{~V} \mathrm{AC} / D C$	Push-in terminals, pluggable	R1.188.3750.0	1

Function	Emergency stop relay
Function display	2 LEDs, green
Power supply circuit	
Rated voltage U_{N} A1, A2	$24 \mathrm{VAC} / \mathrm{DC}$
Rated consumption 24 V DC	$1 \mathrm{~W} / 2 \mathrm{VA}$
Rated frequency	$50-60 \mathrm{~Hz}$
Operating voltage range U_{B}	0.85-1.1 $\times \mathrm{U}_{\mathrm{N}}$
Electrical isolation supply circuit - control circuit	no
Control circuit	
Rated output voltage Y1	24 V DC
Input current / peak current Y2	$50 \mathrm{~mA} / 70 \mathrm{~mA}$
Response time $\mathrm{t}_{\mathrm{A} 1} / \mathrm{t}_{\mathrm{A} 2}$	$<20 \mathrm{~ms} /<70 \mathrm{~ms}$
Minimum ON time tm_{M}	30 ms
Recovery time t_{w}	> 200 ms
Release time t_{R}	$<70 \mathrm{~ms}$
Max. resistivity	$\leq\left(2.5+\left(1.176 \times U_{B} / U_{N}-1\right) \times 50\right) \Omega$
Output circuit	
Enabling paths 13/14, 23/24	normally open contact
Contact assignment	forcebly guided
Contact type	Ag-alloy, gold-plated
Rated switching voltage	$240 \mathrm{~V} \mathrm{AC} \mathrm{/} \mathrm{50V} \mathrm{DC}$
Max. thermal current $\mathrm{I}_{\text {th }}$ enabling path	6 A
Max. total current I^{2} of all current path ($\mathrm{Tu}=55^{\circ} \mathrm{C}$)	$72 A^{2} / 9 A^{2}$
Application category (NO) AC-15	$\mathrm{U}_{\mathrm{e}} 230 \mathrm{~V}, 1 \mathrm{l} 3 \mathrm{~A}$
DC-13	$\mathrm{U}_{\mathrm{e}} 24 \mathrm{~V}, \mathrm{l}$ e 3 A
Short-circuit protection (NO), lead fuse / circuit breaker	6 A class gG / melting integral < $100 \mathrm{~A}^{2}$ S
Mechanical life	10×10^{6} switching cycles
General data	
Creepage distances and clearances between the circuits	EN 60664-1
Protection degree according to EN 60529 (housing / terminals)	IP40 / IP20
Ambient temperature / storage temperature	$-25^{\circ} \mathrm{C}-+55^{\circ} \mathrm{C} /-25^{\circ} \mathrm{C}-+70^{\circ} \mathrm{C}$
Wire ranges screw terminals, fine-stranded / solid	$1 \times 0.2 \mathrm{~mm}^{2}-2.5 \mathrm{~mm}^{2} / 2 \times 0.2 \mathrm{~mm}^{2}-1.0 \mathrm{~mm}^{2}$
fine-stranded with ferrules	$1 \times 0.25 \mathrm{~mm}^{2}-2.5 \mathrm{~mm}^{2} / 2 \times 0.25 \mathrm{~mm}^{2}-1.0 \mathrm{~mm}^{2}$
Permissible torque	$0.5-0.6 \mathrm{Nm}$
Wire ranges push-in terminals	$2 \times 0.25 \mathrm{~mm}^{2}-1.5 \mathrm{~mm}^{2}$
Weight	0.12 kg
Standards	EN ISO 13849-1, EN 62061
Approvals	TÜV, cULus, CCC

SNS 4074K / SNS 4084K

STANDSTILL MONITOR

Δ ©(1) v

STANDSTILL MONITORING FUNCTION

The SNS 4084K standstill monitor provides for the safe monitoring of the frequency of a signal at inputs 11 to 14 of the device. If the frequency of the impulses is higher than the frequency set at the rotary switches ($0.1-99 \mathrm{~Hz}$), outputs Q1/Q2 will switch off. This monitoring function can be used to detect the standstill or a lower, safer rotational speed of a machine.
In applications of this sort, a spring-actuated or magnet-actuated tumbler of an electric interlocking device, for example, can be controlled from the output of the device.
The sensors for the detection of movement can, for example, be two inductive proximity switches or a rotary encoder connected to inputs I1-14. The frequency of the impulses to be monitored is set at the two rotary switches and splitter input T1, and is stored in the device on which the ENTER button is pressed while the voltage is applied to the device.

CIRCUIT DIAGRAM

SNS 4074K / SNS 4084K

SNS 4074K

The device features a bypass input, which allows safety-oriented bypassing of the monitoring function, e.g. when a safe position has been reached. In this case, the signal must fulfill at least the safety category of the selected monitoring function.

SNS 4084K

The device features an input for the implementation of a start override, which allows the safe outputs to be switched off even during machine standstill. This means, for example, that a springactivated protective locking facility can be activated during machine start-up.

Terminals	Description
A1	+24 V
A2	GND
X1 / X2	Signal output, semi-conductor (plus switching)
S1	Configuration input for operating mode group
S2	Configuration input for operating mode group
I1	Sensor input Sensor / configuration input (depending on the operating mode group)
I2	Sensor / configuration input (depending on the operating mode group)
13	Sensor / configuration input (depending on the operating mode group)
I4	Reset input
I5	Bypass input (SNS 4074K) / start override input (SNS 4084K)
I6	Safe Output, semi-conductor (plus switching)
Q1 / Q2	Safe Output, semi-conductor (plus switching), inverted
Q3/Q4	

OVERVIEW OF DEVICES | PART NUMBERS

Type	Frequency range	Terminals	Part no.	
SNS 4074K-A	$0.5-99 \mathrm{~Hz}$	Screw terminals, pluggable	R1.188.3640.0	1
SNS 4074K-C	$0.5-99 \mathrm{~Hz}$	Push-in terminals, pluggable	R1.188.3650.0	1
SNS 4074K-A	$0.1-9.9 \mathrm{~Hz}$	Screw terminals, pluggable	R1.188.3620.0	1
SNS 4074K-C	$0.1-9.9 \mathrm{~Hz}$	Push-in terminals, pluggable	R1.188.3630.0	1
SNS 4084K-A	$0.5-99 \mathrm{~Hz}$	Screw terminals, pluggable	R1.188.3480.0	1
SNS 4084K-C	$0.5-99 \mathrm{~Hz}$	Push-in terminals, pluggable	R1.188.3490.0	1
SNS 4084K-A	$0.1-9.9 \mathrm{~Hz}$	Screw terminals, pluggable	R1.188.3660.0	1
SNS 4084K-C	$0.1-9.9 \mathrm{~Hz}$	Push-in terminals, pluggable	R1.188.3670.0	1

FUNCTION DIAGRAM

TECHNICAL DATA

Function	Standstill monitoring
Function display	12 LEDs, green/red
Function mode / adjustment	Frequency monitoring / 2 x -position switch
Adjustment range $\mathrm{f}_{\text {ST }}$	0,1-99 Hz / 0,5-99 Hz
Power supply circuit	
Rated voltage U_{N} A1, A2	24 V DC
Rated consumption 24 V DC	1.8 W
Operating voltage range U_{B}	0.85-1.1 $\times \mathrm{U}_{\mathrm{N}}$
Electrical isolation supply circuit - control circuit	no
Control circuit	
Rated output voltage	24 V DC
Input current / peak current I1-I6, S1, S2	$3 \mathrm{~mA} / 3,8 \mathrm{~mA}$
Minimum ON time $\mathrm{t}_{\text {M }}$	100 ms (<5s)
Release time t_{R}	$12 \mathrm{~ms}+1.6 / \mathrm{fsT}$
Max. cable length per input	100 m
Output circuit	
Enabling paths Q1, Q2, Q3, Q4	Semi-conductor (plus switching), safety-related
Signaling paths X1, X2	Semi-conductor (plus switching), not safety-related
Rated switching voltage enabling path	30 V DC
Max. thermal current $\mathrm{I}_{\text {th }}$ enabling path	2 A
Max. total current I^{2} of all current path $\quad\left(\mathrm{Tu}=55^{\circ} \mathrm{C}\right)$	4 A
Mechanical life	Must be short-circuit proof
General data	
Creepage distances and clearances between the circuits	EN 60664-1
Protection degree according to EN 60529 (housing / terminals)	IP40 / IP20
Ambient temperature / storage temperature	$-25^{\circ} \mathrm{C}-+55^{\circ} \mathrm{C} /-25^{\circ} \mathrm{C}-+70^{\circ} \mathrm{C}$
Wire ranges screw terminals, fine-stranded / solid	$1 \times 0.2 \mathrm{~mm}^{2}-2.5 \mathrm{~mm}^{2} / 2 \times 0.2 \mathrm{~mm}^{2}-1.0 \mathrm{~mm}^{2}$
fine-stranded with ferrules	$1 \times 0.25 \mathrm{~mm}^{2}-2.5 \mathrm{~mm}^{2} / 2 \times 0.25 \mathrm{~mm}^{2}-1.0 \mathrm{~mm}^{2}$
Permissible torque	$0.5-0.6 \mathrm{Nm}$
Wire ranges push-in terminals	$1 \times 0.25 \mathrm{~mm}^{2}-1.5 \mathrm{~mm}^{2}$
Weight	0.16 kg
Standards	EN ISO 13849-1, EN 62061
Approvals	TÜV, cULus

SVM 4001K

STANDSTILL MONITOR

APPLICATIONS

- Standstill monitoring
- Monitoring of electrical lockout devices
- Control of spring-actuated tumblers
- Monitoring of low rotational speeds in setup operation
- Up to PL e / Category 4 (EN ISO 13849-1)
- Up to SIL ${ }_{c l} 3$ (EN 62061)

FEATURES

- Sensorless monitoring of 1-phase and 3-phase motors
- Safe, configurable voltage monitoring
- Automatic operation

(나) us

FUNCTION

The SVM 4001K device monitors machines, the 3-phase powered drive units of which have no movement detection sensors.

When the drives are set in motion or if faults are detected, the standstill monitor relay assumes the rest position.

APPLICATION

OVERVIEW OF DEVICES | PART NUMBERS

Type	Frequency range	Terminals	Part no.	
SVM 4001K-A	$24 V D C$	Screw terminals, pluggable	R1.188.4020.0	1
SVM 4001K-C	$24 V D C$	Push-in terminals, pluggable	R1.188.4030.0	1

CIRCUIT DIAGRAM

SVM 4001K

TECHNICAL DATA	
Function	Standstill monitoring
Function display	4 LED, green/red
Function mode / adjustment	Voltage measurement
Adjustment range	50-500 mV
Power supply circuit	
Rated voltage U_{N} A1, A2	24 VDC
Rated consumption 24 V DC	1.8 W
Operating voltage range U_{B}	$0.85-1.1 \times U_{N}$
Control circuit	
Rated output voltage U, V, W	690 V AC3
Response time $\mathrm{t}_{\text {A }}$	20 ms
Release time $\mathrm{t}_{\text {R }}$	20 ms
Output circuit	
Enabling paths 13/14, 23/24	normally open contact
Contact assignment	forcebly guided
Contact type	Ag-alloy
Rated switching voltage	230 V AC
Max. thermal current $\mathrm{t}_{\text {th }}$	8 A
Application category (NO) AC-15	Ue $230 \mathrm{~V}, \mathrm{l}$ e 3 A
DC-13	$\mathrm{U}_{\mathrm{e}} 24 \mathrm{~V}, \mathrm{l}$ e 4 A
Short-circuit protection (NO), lead fuse / circuit breaker	5 A class gG
Mechanical life	20×10^{6} switching cycles
General data	
Creepage distances and clearances between the circuits	EN 60664-1
Protection degree according to EN 60529 (housing / terminals)	IP40 / IP20
Ambient temperature / storage temperature	$-20^{\circ} \mathrm{C}-+55^{\circ} \mathrm{C} /-40^{\circ} \mathrm{C}-+80^{\circ} \mathrm{C}$
Wire ranges screw terminals, \quad fine-stranded / solid	$1 \times 0.2 \mathrm{~mm}^{2}-2.5 \mathrm{~mm}^{2} / 2 \times 0.2 \mathrm{~mm}^{2}-1.0 \mathrm{~mm}^{2}$
	$1 \times 0.25 \mathrm{~mm}^{2}-2.5 \mathrm{~mm}^{2} / 2 \times 0.25 \mathrm{~mm}^{2}-1.0 \mathrm{~mm}^{2}$
Permissible torque	$0.5-0.6 \mathrm{Nm}$
Wire ranges push-in terminals	$1 \times 0.25 \mathrm{~mm}^{2}-1.5 \mathrm{~mm}^{2}$
Weight	0.180 kg
Standards	EN ISO 13849-1, EN 62061
Approvals	TÜV, cULus

SNT 4M63K

MONITORING OF EMERGENCY STOP AND SAFETY GATES

©(1) us © (CC)

FUNCTION

The device is a two-channel switching device with self-monitoring on each ON-OFF cycle. It complies with EN 60204-1 and is equipped with forcibly guided relays. It is intended for monitoring connected switching elements on separating safety devices and generating a safety-oriented signal (enable). Depending on the design, separating safety devices may include sliding safety gates, safety gates, housings, covers, sheetings, screens, etc.

BASIC FUNCTION

With supply voltage applied to terminals A1/A2 and the safety inputs closed, pressing the reset button closes the enabling current paths (manual start). When the safety inputs are opened the enabling paths will open.

APPLICATIONS

- Protection of people and machinery
- Monitoring of emergency stop applications
- Monitoring of safety gates
- Up to PL e / Category 4 (EN ISO 13849-1)
- Up to SILcl 3 (EN 62061)

FEATURES

- Stop Category 0 according to EN 60204-1
- Manual or automatic start
- Cross monitoring
- 3 enabling current paths (NO contact, forcibly guided)
- Feedback loop for monitoring external contactors
- Manual start - When the safety inputs are closed, a button is used to close reset input S34 and open it again (triggering with falling edge) or to close reset input S35 (triggering with rising edge).
- Automatic Start - Reset input S35 is connected to S33/S14. The device starts with the rising edge of the signal on safety input S14.

CIRCUIT DIAGRAM

OVERVIEW OF DEVICES | PART NUMBERS

Type	Rated voltage	Terminals	Part no.	
SNT 4M63K-A	$24 \mathrm{VAC} / \mathrm{DC}$	Screw terminals, pluggable	R1.188.1050.0	1
	$115-120 \mathrm{VAC}$	Screw terminals, pluggable	R1.188.1060.0	1
	230 VAC	Screw terminals, pluggable	R1.188.1070.0	1
SNT 4M63K-C	$24 \mathrm{VAC} / \mathrm{DC}$	Push-in terminals, pluggable	R1.188.2390.0	1

TECHNICAL DATA	
Function	Emergency stop relay, valve position and safety gate monitoring
Function display	3 LEDs, green
Power supply circuit	
Rated voltage UN A1, A2	$24 \mathrm{~V} \mathrm{AC/DC} 115-,120 \mathrm{VAC}, 230 \mathrm{~V} \mathrm{AC}$
Rated consumption 24 V DC	2.0 W
115-120 V AC, 230 VAC	2,6 W / 3.2 VA
Rated frequency	$50-60 \mathrm{~Hz}$
Operating voltage range U_{B}	0.85-1.1 $\times \mathrm{U}_{\mathrm{N}}$
Electrical isolation supply circuit - control circuit	yes (at $\left.\mathrm{U}_{\mathrm{N}}=115-230 \mathrm{VAC}, 230 \mathrm{VAC}\right)$
Control circuit	
Rated output voltage S13/S23	22 VDC
Input current / peak current	$40 \mathrm{~mA} / 100 \mathrm{~mA}$
	$5 \mathrm{~mA} / 50 \mathrm{~mA}$
Response time $\mathrm{t}_{\text {A1 }} / \mathrm{t}_{\text {A2 }}$	$40 \mathrm{~ms} / 600 \mathrm{~ms}$
Minimum ON time t_{M}	80 ms
Recovery time $\mathrm{tw}_{\text {w }}$	100 ms
Release time t_{R}	15 ms
Synchronous time ts	$200 \mathrm{~ms}(\mathrm{CH1} \rightarrow \mathrm{CH} 2)$
Max. resistivity, per channel ${ }^{11}$ 24VAC/DC	$\leq\left(5+\left(1.176 \times U_{B} / U_{N}-1\right) \times 100\right) \Omega$
115-120 V AC, 230 VAC	$\leq\left(5+\left(1.176 \times U_{B} / U_{N}-1\right) \times 100\right) \Omega$
Output circuit	
Enabling paths 13/14, 23/24,33/34	normally open contact
Contact assignment	forcebly guided
Contact type	Ag-alloy, gold-plated
Rated switching voltage enabling path	230 V AC
Max. thermal current $I_{\text {th }}$ enabling path	6 A
Max. total current 1^{2} of all current path $\quad\left(\mathrm{Tu}=55^{\circ} \mathrm{C}\right)$	$9 A^{2}$
Application category (NO) AC-15	$\mathrm{U}_{\mathrm{e}} 230 \mathrm{~V}, \mathrm{l}_{\mathrm{e}} 3 \mathrm{~A}$
DC-13	$\mathrm{U}_{\mathrm{e}} 24 \mathrm{~V}, 1 \mathrm{l} 2.5 \mathrm{~A}$
Short-circuit protection (NO), lead fuse / circuit breaker	6 A class gG / melting integral < $100 \mathrm{~A}^{2}$ S
Mechanical life	10^{7} switching cycles
General data	
Creepage distances and clearances between the circuits	EN 60664-1
Protection degree according to EN 60529 (housing / terminals)	IP40 / IP20
Ambient temperature / storage temperature	$-25^{\circ} \mathrm{C}-+55^{\circ} \mathrm{C} /-25^{\circ} \mathrm{C}-+75^{\circ} \mathrm{C}$
Wire ranges screw terminals, fine-stranded / solid	$1 \times 0.2 \mathrm{~mm}^{2}-2.5 \mathrm{~mm}^{2} / 2 \times 0.2 \mathrm{~mm}^{2}-1.0 \mathrm{~mm}^{2}$
fine-stranded with ferrules	$1 \times 0.25 \mathrm{~mm}^{2}-2.5 \mathrm{~mm}^{2} / 2 \times 0.25 \mathrm{~mm}^{2}-1.0 \mathrm{~mm}^{2}$
Permissible torque	$0.5-0.6 \mathrm{Nm}$
Wire ranges push-in terminals	$1 \times 0.25 \mathrm{~mm}^{2}-1-5 \mathrm{~mm}^{2}$
Weight	$0-21 \mathrm{~kg} / 0-25 \mathrm{~kg}$
Standards	EN ISO 13849-1, EN 62061
Approvals	DGUV, cULus, CCC

SNZ 4052K

TWO-HAND RELAY TYPE IIIC

\triangle © (UL) Us

APPLICATIONS

- Protection of people and machinery
- Monitoring of two-hand applications
- Press
- According to EN 574 Type IIIC
- Up to PL e / Category 4 (EN ISO 13849-1)
- Up to SIL ${ }_{c l} 3$ (EN 62061)

FEATURES

- Stop Category 0 according to EN 60204-1
- Two-channel actuation; 1 NO contact and 1 NC contact for each channel
- Cross monitoring
- Monitoring of synchronous activation
- 2 enabling current paths, 1 signaling current path

FUNCTION

The device complies with EN 574 Type III C safety requirements. The safety behavior of the device is designed for applications according to Category 4 (EN 954-1). The device is single-fault safe and self-monitoring. Synchronous activation of both actuators (two-hand momentary contact or safety gate contacts) is monitored. Each of the two actuators is connected to the device with an NO contact and an NC contact. The technical design of the input circuit provides cross connection and ground fault monitoring. The output function is designed with 2 NO contacts as an enabling current path and 1 NC contact as signaling current path (all forcibly guided).
With supply voltage applied to terminals A1/A2 and the feedback loop (terminals Y1/Y2) closed, the enabling current paths are closed by simultaneously activating the actuators (S1+S2).

Both actuators must be activated within 0.5 s for the output contacts to be enabled. If only one of the two actuators is released, the device is immediately de-energized. The enabling current paths open.
The device can be restarted only after both actuators have returned to their initial position (for example when the two-hand momentary contact switches have been released) and the feedback circuit is closed again. The feedback circuit should only be opened again after both actuators are activated. Otherwise the device will remain in the OFF position. The current status of the device is indicated by 3 LEDs: application of the supply voltage with LED SUPPLY, activation of both actuators with LED K1 and additionally with LED K2 in case of synchronous activation.

CIRCUIT DIAGRAM

SNZ 4052K
24 V DC
$115-120$ V AC / 230 V AC

OVERVIEW OF DEVICES | PART NUMBERS

Type	Rated voltage	Terminals	Part no.	P.U.
SNZ 4052K-A	$24 \mathrm{VAC} / \mathrm{DC}$	Screw terminals, pluggable	R1.188.0530.1	1
	$115-120$ VAC	Screw terminals, pluggable	R1.188.0940.1	1
SNZ 4052K-C	230 VAC	Screw terminals, pluggable	R1.188.0950.1	1
	$24 \mathrm{VAC} /$ DC	Push-in terminals, pluggable	R1.188.2020.0	1

TECHNICAL DATA	
Function	Two-hand control relay
Function display	3 LEDs, green
Power supply circuit	
Rated voltage UN A1, A2	$24 \mathrm{~V} \mathrm{AC/DC} 115-,120 \mathrm{VAC}, 230 \mathrm{~V} \mathrm{AC}$
Rated consumption	2.4 W
	2.2W/3.1 VA
Rated frequency	$50-60 \mathrm{~Hz}$
Operating voltage range U_{B}	0.85-1.1 $\times \mathrm{U}_{\mathrm{N}}$
Electrical isolation supply circuit - control circuit	yes (at $\mathrm{U}_{\mathrm{N}}=115-230 \mathrm{VAC}, 230 \mathrm{VAC}$)
Control circuit	
Rated output voltage $\quad \mathrm{Y} 12 / \mathrm{Y} 14, \mathrm{Y} 22 / \mathrm{Y} 24, \mathrm{Y} 1$	24 V DC
Input current / peak current	$60 \mathrm{~mA} / 1000 \mathrm{~mA}$
	$<100 \mathrm{~mA}$
Response time $\mathrm{t}_{\mathrm{A} 1} / \mathrm{t}_{\mathrm{A} 2}$	40 ms
Recovery time $\mathrm{t}_{\text {w }}$	250 ms
Release time t_{R}	50 ms
Synchronous time ts	$\leq 500 \mathrm{~ms}$
Max. resistivity, per channel	$\leq\left(2.5+\left(1.176 \times U_{B} / U_{N}-1\right) \times 50\right) \Omega$
	$\leq\left(2.5+\left(1.176 \times U_{B} / U_{N}-1\right) \times 50\right) \Omega$
Output circuit	
Enabling paths 13/14, 23/24	normally open contact
Signaling paths 31/32	normally closed contact
Contact assignment	forcebly guided
Contact type	Ag-alloy, gold-plated
Rated switching voltage enabling / signaling path	230 VAC
Max. thermal current $\mathrm{t}_{\text {th }}$ enabling / signaling path	$6 \mathrm{~A} / 2 \mathrm{~A}$
Max. total current 1^{2} of all current path ($\mathrm{Tu}=55^{\circ} \mathrm{C}$)	$9 \mathrm{~A}^{2}$
Application category (NO)	$\mathrm{U}_{\mathrm{e}} 230 \mathrm{~V}, 1 \mathrm{l} 3 \mathrm{~A}$
	$\mathrm{U}_{\mathrm{e}} 24 \mathrm{~V}, 1 \mathrm{l} 2.5 \mathrm{~A}$
Short-circuit protection (NO), lead fuse / circuit breaker	6 A class gG / melting integral / < $100 \mathrm{~A}^{2} \mathrm{~s}$
Mechanical life	10^{7} switching cycles
General data	
Creepage distances and clearances between the circuits	EN 60664-1
Protection degree according to EN 60529 (housing / terminals)	IP40 / IP20
Ambient temperature / storage temperature	$-25^{\circ} \mathrm{C}-+55^{\circ} \mathrm{C} /-25^{\circ} \mathrm{C}-+75{ }^{\circ} \mathrm{C}$
Wire ranges screw terminals,	$1 \times 0.2 \mathrm{~mm}^{2}-2.5 \mathrm{~mm}^{2} / 2 \times 0.2 \mathrm{~mm}^{2}-1.0 \mathrm{~mm}^{2}$
	$1 \times 0.25 \mathrm{~mm}^{2}-2.5 \mathrm{~mm}^{2} / 2 \times 0.25 \mathrm{~mm}^{2}-1.0 \mathrm{~mm}^{2}$
Permissible torque	$0.5-0.6 \mathrm{Nm}$
Wire ranges Push-in terminals	$1 \times 0.25 \mathrm{~mm}^{2}-1.5 \mathrm{~mm}^{2}$
Weight	$0.20 \mathrm{~kg} / 0.25 \mathrm{~kg}$
Standards	EN ISO 13849-1, EN 62061, EN 574
Approvals	TÜV, cULus, CCC

SNZ 1022K

TWO-HAND RELAY TYPE IIIA

\triangle © (UL)

APPLICATIONS

- Protection of people and machinery
- Monitoring of two-hand applications
- According to EN 574 Type IIIA
- Up to PL c / Category 1 (EN ISO 13849-1)
- Up to SIL 1 (EN 62061)

FEATURES

- Stop Category 0 according to EN 60204-1
- Two-channel actuation; 1 NO contact and 1 NC contact for each channel
- Cross monitoring
- Monitoring of synchronous activation
- 1 changeover contact

FUNCTION

After the power supply is established at terminals A1/A2 the release current paths are closed when the actuators (S1+S2) are operated at the same time. The two actuators must be operated within 0.5 s to trigger a release. If just one of the two actuators is released, the device is immediately de-energized and the enabling current path is opening.

The device can only be restarted once the two actuators are returned to their initial positions (e.g. the two-hand buttons have been released). The current status of the device is shown by 2 LEDs. The presence of the power supply is indicated with the SUPPLY LED, the operation of the two actuators with the K1 LED, if there is synchronous operation.

CIRCUIT DIAGRAM

SNZ 1022K

OVERVIEW OF DEVICES | PART NUMBERS

Type	Rated Voltage	Synchronoustime	Terminals	Part no.	
SNZ 1022K-A	24 V AC/DC	0.5 s	Screw terminals, pluggable	R1.188.3700.0	1
SNZ 1022K-A	$115-230$ VAC	0.5 s	Screw terminals, pluggable	R1.188.3710.0	1
SNZ 1022K-C	24 V AC/DC	0.5 s	Push-in terminals, pluggable	R1.188.3720.0	1
SNZ 1022K-C	$115-230$ VAC	0.5 s	Push-in terminals, pluggable	R1.188.3730.0	1

TECHNICAL DATA

Function	Two-hand control relay
Function display	2 LEDs, green
Power supply circuit	
Rated voltage U_{N} A1, A2	$24 \mathrm{~V} \mathrm{AC} / \mathrm{DC} / 115-230 \mathrm{~V}$ AC
Rated consumption AC/DC 24 V	0.7 W / 2.0 VA
AC 115-230 V	3 VA
Rated frequency	$50-60 \mathrm{~Hz}$
Operating voltage range U_{B}	0.85-1.1 $\times \mathrm{U}_{\mathrm{N}}$
Electrical isolation supply circuit - control circuit	yes (at $\left.\mathrm{U}_{\mathrm{N}}=115-230 \mathrm{~V} \mathrm{AC}\right)$
Control circuit	
Rated output voltage T11	24 VDC
Input current / peak current T12	$2.5 \mathrm{~mA} / 3 \mathrm{~mA}$
T13	$25 \mathrm{~mA} / 60 \mathrm{~mA}$
Response time $\mathrm{t}_{\text {A1 }} / \mathrm{t}_{\text {A2 }}$	$<20 \mathrm{~ms}$
Recovery time $\mathrm{t}_{\text {w }}$	$>250 \mathrm{~ms}$
Release time t_{R}	$<20 \mathrm{~ms}$
Synchronous time ts	$\leq 500 \mathrm{~ms}$
Max. resistivity, per channel	$\left(5+\left(1.176 \times U_{B} / U_{N}-1\right) \times 100\right) \Omega$
Output circuit	
Enabling paths 11/12/14	changeover contact
Contact type	Ag-alloy, gold-plated
Rated switching voltage	230 V AC
Max. thermal current $\mathrm{Ith}^{\text {then }}$ enabling path 10/12	6 A
Application category (NO) AC-15	$\mathrm{U}_{\mathrm{e}} 230 \mathrm{~V}, \mathrm{l}_{\mathrm{e}} 3 \mathrm{~A}$
DC-13	Ue $24 \mathrm{~V}, \mathrm{l}$ e 2 A
Short-circuit protection (NO), lead fuse / circuit breaker	6 A class gG / melting integral < $100 \mathrm{~A}^{2} \mathrm{~s}$
Mechanical life	10×10^{6} switching cycles
General data	
Creepage distances and clearances between the circuits	EN 60664-1
Protection degree according to EN 60529 (housing / terminals)	IP40 / IP20
Ambient temperature / storage temperature	$-25^{\circ} \mathrm{C}-+55^{\circ} \mathrm{C} /-25^{\circ} \mathrm{C}-+75^{\circ} \mathrm{C}$
Wire ranges screw terminals, fine-stranded / solid	$1 \times 0.2 \mathrm{~mm}^{2}-2.5 \mathrm{~mm}^{2} / 2 \times 0.2 \mathrm{~mm}^{2}-1.0 \mathrm{~mm}^{2}$
fine-stranded with ferrules	$1 \times 0.25 \mathrm{~mm}^{2}-2.5 \mathrm{~mm}^{2} / 2 \times 0.25 \mathrm{~mm}^{2}-1.0 \mathrm{~mm}^{2}$
Permissible torque	$0.5-0.6 \mathrm{Nm}$
Wire ranges push-in terminals	$2 \times 0.25 \mathrm{~mm}^{2}-1.5 \mathrm{~mm}^{2}$
Weight $24 \mathrm{VAC} / \mathrm{DC}$ device / AC device	0.1 kg
Standards	EN ISO 13849-1, EN 62061, EN 574
Approvals	TÜV, cULus, CCC

SNV 4063KL

MONITORING OF EMERGENCY STOP, SAFETY GATES AND LIGHT BARRIERS, OFF-DELAYED

\triangle ONV.GL \quad (UL) us

APPLICATIONS

- Protection of people and machinery
- Monitoring of emergency stop applications
- Monitoring of safety gates
- Monitoring of light barriers
- Termination of braking operations through OFF-delay time
- Control of solenoid-actuated interlocks
- Up to PL e / Category 4 (EN ISO 13849-1) for undelayed contacts
- Up to PLd / Category 3 (EN ISO 13849-1) for delayed contacts
- Up to SILCL 3 (EN 62061)

FEATURES

- Stop category 0/1 according to EN 60204-1
- Single-channel or two-channel control
- Manual or automatic start
- OFF-delay time adjustable in the range 0.15 to 3 s or 1.5 to 30 s
- Reset button monitoring, cross monitoring, monitoring of synchronous time
- 3 enabling current paths (2 undelayed, 1 OFF-delayed)

With a two-channel control and cross-monitoring wiring of the sensor circuit, additional errors such as short-circuit or ground fault can be detected. An electronic fuse protects the device against damage. After the cause of the malfunction has been removed, the device is operational again after approx. 3 s .

- Reset button monitoring - The device can be started either with the falling edge or with the rising edge (terminals S34 or S35). For emergency stop applications with manual start the button must be connected to terminals S33/S34. The device is enabled only with the falling edge of the reset signal. For starting, the reset button must be pressed and released. For safety gate applications in which an automatic start is performed it is necessary to bridge terminals S33/S35. The device will react at the rising edge of input S12 which is internally connected to S33.
- Monitoring of synchronous time - The use of safety limit switches for single-channel or two-channel circuits in safety gate applications depends on the required safety level. The device provides a monitoring of the synchronous time of two connected safety switches. A synchronous time $t_{s} \approx 0.5 \mathrm{~s}$ requires limit switches positioned in such a way that channel 1 , terminals S11/ S12, closes before channel 2, terminals S21/S22. If channel 2 closes before channel 1 , the synchronous time is $t_{s}=\infty$.

OVERVIEW OF DEVICES | PART NUMBERS

Type	Time range	Rated voltage	Terminals	Part no.	
SNV 4063KL-A	3 s	24 V DC	Screw terminals, pluggable	R1.188.0620.0	1
	30 s	24 V DC	Screw terminals, pluggable	R1.188.0640.0	1
SNV 4063KL-C	3 s	24 V DC	Screwterminals, pluggable	R1.188.4100.0	1
	30 s	24 V DC	Push-in terminals, pluggable	R1.188.2010.0	1

TECHNICAL DATA	
Function	Emergency stop relay for controlled stop
Function display	3 LEDs, green
Function mode / adjustment	Time / stepless
Adjustment range	$0.15-3 \mathrm{~s} / 1.5-30 \mathrm{~s} / 7.5-150 \mathrm{~s}$
Power supply circuit	
Rated voltage U_{N} A1, A2	24 V DC
Rated consumption 24 V DC	2.6 W
Operating voltage range U_{B}	0.85-1.1 $\times \mathrm{U}_{\mathrm{N}}$
Electrical isolation supply circuit - control circuit	no
Control circuit	
Rated output voltage S11,S33/S21	22 VDC
Input current / peak current S12, S31/S22	$25 \mathrm{~mA} / 100 \mathrm{~mA}$
S34, S35	$40 \mathrm{~mA} / 50 \mathrm{~mA}$
Response time $\mathrm{t}_{\text {A1 }} / \mathrm{t}_{\mathrm{A} 2}$	$30 \mathrm{~ms} / 700 \mathrm{~ms}$
Minimum ON time t_{M}	200 ms
Recovery time $\mathrm{t}_{\text {w }}$	500 ms
Release time t_{R}	25 ms
Release time t_{R}, delayed contacts (tolerance)	$0.15-3 \mathrm{~s} / 1.5-30 \mathrm{~s}(\pm 16 \%)$
Synchronous timets	500 ms
Permissable test pulse time $\mathrm{t}_{\text {T }}$	$<1 \mathrm{~ms}$
Max. resistivity, per channel ${ }^{1)}$	$\leq\left(5+\left(1.176 \times U_{B} / U_{N}-1\right) \times 100\right) \Omega$
Output circuit	
$\begin{array}{ll}\text { Enabling paths } & 13 / 14,23 / 24 \\ & 37 / 38\end{array}$	normally open contact
	normally open contact, OFF-delayed
Contact assignment	forcebly guided
Contact type	Ag-alloy, gold-plated
Rated switching voltage enabling path	230 V AC
Max. thermal current $I_{\text {th }}$ enabling path	6 A
Max. total current 1^{2} of all current path $\quad\left(\mathrm{Tu}=55^{\circ} \mathrm{C}\right)$	$5 \mathrm{~A}^{2}$
Application category (NO) AC-15	$\mathrm{U}_{\mathrm{e}} 230 \mathrm{~V}, 1 \mathrm{l} 3 \mathrm{~A}$
DC-13	Ue $24 \mathrm{~V}, \mathrm{l}$ e 2 A
Short-circuit protection (NO), lead fuse / circuit breaker	6 A Class gG / melting integral $<100 \mathrm{~A}^{2}$ S
Mechanical life	10^{7} switching cycles
General data	
Creepage distances and clearances between the circuits	EN 60664-1
Protection degree according to EN 60529 (housing / terminals)	IP40 / IP20
Ambient temperature / storage temperature	$-25^{\circ} \mathrm{C}-+55^{\circ} \mathrm{C} /-25^{\circ} \mathrm{C}-+70^{\circ} \mathrm{C}$
Wire ranges screw terminals, fine-stranded / solid	$1 \times 0.2 \mathrm{~mm}^{2}-2.5 \mathrm{~mm}^{2} / 2 \times 0.2 \mathrm{~mm}^{2}-1.0 \mathrm{~mm}^{2}$
fine-stranded with ferrules	$1 \times 0.25 \mathrm{~mm}^{2}-2.5 \mathrm{~mm}^{2} / 2 \times 0.25 \mathrm{~mm}^{2}-1.0 \mathrm{~mm}^{2}$
Permissible torque	$0.5-0.6 \mathrm{Nm}$
Wire ranges push-in terminals	$1 \times 0.25 \mathrm{~mm}^{2}-1.5 \mathrm{~mm}^{2}$
Weight	0.20 kg
Standards	EN ISO 13849-1, EN 62061, EN 50156-1
Approvals	TÜV, GL, cULus, CCC

SNV 4063KP

MONITORING OF EMERGENCY STOP, SAFETY GATES AND LIGHT BARRIERS, ON-DELAYED

(H1) Us (CCO

APPLICATIONS

- Protection of people and machinery
- Monitoring of emergency stop applications
- Monitoring of safety gates
- Monitoring of light barriers
- Monitoring of interlocking installation with position switches and integrated locking
- Control of spring-actuated interlocks
- Up to PL e / Category 4 (EN ISO 13849-1)
- Up to SILcl 3 (EN 62061)

FEATURES

- Stop Category 0 according to EN 60204-1
- Single-channel or two-channel control
- Manual or automatic start
- ON-delay time adjustable in the range 0.15 to 3 s or 1.5 to 30 s
- Reset button monitoring, cross monitoring
- 3 enabling current paths (2 undelayed, 1 ON-delayed)

FUNCTION

With supply voltage applied to terminals A1/A2, relays K3 and K4 (terminals 37/38) start with the pre-selected ON-delay time. The ON-delay time $t_{\text {A1 }}$ can be adjusted infinitely in the range 0.15 to 3 s or 1.5 to 30 s according to the device type. The device is enabled by pressing the reset button. The following operating modes can be selected:

CIRCUIT DIAGRAM

SNV 4063KP

- Manual start - The reset button must be connected to S34 through terminal S33. For starting the relay, the reset button must be pressed. Relays K3 and K4 (terminals 37/38) will switch into the OFF position. With the falling edge of the reset signal, the reset is completed and activates relays K1 and K2, which become self-locking after the response time tA3. After this switch-on phase, the 2 enabling current paths defined for the output are closed (terminals 13/14, 23/24). With the emergency stop command, the power supply to relays K1 and K2 is interrupted. The enabling current paths (terminals $13 / 14,23 / 24$) are immediately opened with release time tR, and relays K 3 and K 4 will start after the pre-set ON-delay time tA1, terminals 37/38. Three LEDs display the state of relays $\mathrm{K} 1 / \mathrm{K} 2, \mathrm{~K} 3 / \mathrm{K} 4$ and the supply voltage.
- Automatic start - For monitoring of interlocking installations with locking mechanism or safety gate applications in which on automatic start shall be performed it is necessary to jumper terminals S33/S35. The device will react at the rising edge of input S12 that is internally connected to S33. Relays K3 and K4 (terminals $37 / 38$) will switch into the OFF position. With the rising edge of input S12 the relay K1 is activated and response time tA2 started. When the time has elapsed, the 2 enabling current paths are closed (terminals $13 / 14,23 / 24$). With a stop command the power supply to relays K1 and K2 is interrupted. The enabling current paths (terminals $13 / 14,23 / 24$) are immediately opened with release time $t R$, and relays K 3 and K 4 will start after the pre-set ON-delay time tA1, terminals 37/38.

OVERVIEW OF DEVICES | PART NUMBERS

Type	Time range	Rated voltage	Terminals	Part no.	P.U.
SNV 4063KP-A	3 s	24 VDC	Screwterminals, pluggable	R1.188.0660.0	1
	30 s	24 V DC	Screwterminals, pluggable	R1.188.0680.0	1

TECHNICAL DATA	
Function	Emergency stop relay for access delay combined with locking mechanism
Function display	3 LEDs, green
Function mode / adjustment	Time / stepless
Adjustment range	0.15-3s/1.5-30 s
Power supply circuit	
Rated voltage $U_{N} \quad$ A1, A2	24 V DC
Rated consumption 24 V DC	2.6 W
Operating voltage range U_{B}	0.85-1.1 $\times \mathrm{U}_{\mathrm{N}}$
Electrical isolation supply circuit - control circuit	no
Control circuit	
Rated output voltage S11,S33/S21	22 VDC
Input current / peak current S12, S31/S22	$25 \mathrm{~mA} / 100 \mathrm{~mA}$
S34, S35	$40 \mathrm{~mA} / 50 \mathrm{~mA}$
Response time $\mathrm{t}_{\text {A1 }} / \mathrm{t}_{\text {A } 2}$	$30 \mathrm{~ms} / 700 \mathrm{~ms}$
Minimum ON time t_{M}	200 ms
Recovery time $\mathrm{tw}_{\text {w }}$	500 ms
Release time t_{R}	25 ms
Release time t_{R}, delayed contacts (tolerance)	$0.15-3 \mathrm{~s} / 1.5-30 \mathrm{~s}(\pm 16 \%)$
Synchronous timets	500 ms
Permissable test pulse time $\mathrm{t}_{\text {T }}$	$<1 \mathrm{~ms}$
Max. resistivity, per channel ${ }^{1)}$	$\leq\left(5+\left(1.176 \times \mathrm{U}_{B} / \mathrm{U}_{N}-1\right) \times 100\right) \Omega$
Output circuit	
Enabling paths 13/14, 23/24	normally open contact
37/38	normally open contact, ON-delayed
Contact assignment	forcebly guided
Contact type	Ag-alloy, gold-plated
Rated switching voltage enabling path	230 V AC
Max. thermal current $\mathrm{I}_{\text {th }}$ enabling path	6 A
Max. total current 1^{2} of all current path $\quad\left(\mathrm{Tu}=55^{\circ} \mathrm{C}\right)$	$5 A^{2}$
Application category (NO) AC-15	$\mathrm{U}_{\mathrm{e}} 230 \mathrm{~V}, 1 \mathrm{l} 3 \mathrm{~A}$
DC-13	$\mathrm{U}_{\mathrm{e}} 24 \mathrm{~V}, \mathrm{l}$ e 2 A
Short-circuit protection (NO), lead fuse / circuit breaker	6 A Class gG / melting integral < $100 \mathrm{~A}^{2} \mathrm{~s}$
Mechanical life	10^{7} switching cycles
General data	
Creepage distances and clearances between the circuits	EN 60664-1
Protection degree according to EN 60529 (housing / terminals)	IP40 / IP 20
Ambient temperature / storage temperature	$-25^{\circ} \mathrm{C}-+55^{\circ} \mathrm{C} /-25^{\circ} \mathrm{C}-+70^{\circ} \mathrm{C}$
Wire ranges screw terminals, fine-stranded / solid	$1 \times 0.2 \mathrm{~mm}^{2}-2.5 \mathrm{~mm}^{2} / 2 \times 0.2 \mathrm{~mm}^{2}-1.0 \mathrm{~mm}^{2}$
fine-stranded with ferrules	$1 \times 0.25 \mathrm{~mm}^{2}-2.5 \mathrm{~mm}^{2} / 2 \times 0.25 \mathrm{~mm}^{2}-1.0 \mathrm{~mm}^{2}$
Permissible torque	0,5-0,6 Nm
Wire ranges push-in terminals	$1 \times 0.25 \mathrm{~mm}^{2}-1.5 \mathrm{~mm}^{2}$
Weight	0.20 kg
Standards	EN ISO 13849-1, EN 62061, EN 50156-1
Approvals	TÜV, GL, cULus, CCC

SNV 4074SL / SNV 4076SL

MONITORING OF EMERGENCY STOP, SAFETY GATES AND LIGHT BARRIERS, OFF-DELAYED

Δ

OFF-DELAY FUNCTION

After the supply voltage is applied to terminals A1/A2 and the safety inputs are closed, the enabling current paths (NO contacts) are closed automatically or by pressing the reset button (manual start). When the safety inputs are opened/de-energized the enabling current paths (NO contacts are opened immediately or with a delay).

APPLICATIONS

- Controlled stop according to Category 1 (EN 60204-1)
- Monitoring of emergency stop applications
- Monitoring of safety gates
- Monitoring of interlocks
- Monitoring of light barriers
- Up to PL e / Category 4 (EN ISO 13849-1)
- Up to SIL 3 (EN 62061)

FEATURES

- Stop Category 0/1 according to EN 60204-1
- Time setting in 10 steps
- Time ranges 3 s , 30 s or 300 s
- Single-channel or two-channel control
- Manual or automatic start
- SafeStart
- Cross monitoring
- Automatic start - Reset input S14 is connected to safety input S12. To monitor external contact blocks (EDM), their NC contacts must be connected in series between S34 and S12.
- Manual start without monitoring - Reset input S14 is connected to safety input S12 via a reset button. To monitor external contact blocks (EDM), their NC contacts must be connected in series to the reset button.
- Manual start with monitoring - Reset input S34 is connected to safety input S11 via a reset button. To monitor external contact blocks (EDM), their NC contacts must be connected in series to the reset button.

CIRCUIT DIAGRAMS

SNV 4074SL

SNV 4076SL

OVERVIEW OF DEVICES | PART NUMBERS

Type	Time range	Rated voltage		Terminals	Part no. $\mathbf{2 4 V ~ D C ~}$	Part no. 115-230V AC	P.U.

TECHNICAL DATA

Function			Emergency stop relay	
Function display			5 LEDs, green/red	
Function mode / adjustment			Time setting in 10 steps	
Adjustment range			0.1-3s/0-30s/0-300 s	
Power supply circuit				
Rated voltage U_{N}	A1, A2		24 V DC / 115-230 V AC	
Rated consumption	24 V DC	115-230 V AC	2.8W \| $3.2 \mathrm{~W} / 6,3 \mathrm{VA}$	
Rated frequency			$50-60 \mathrm{~Hz}$	
Operating voltage range U_{B}			0.85-1.1 $\times \mathrm{U}_{\mathrm{N}}$	
Electrical isolation supply circuit - control	circuit		yes (at $U_{N}=A C 115-230 \mathrm{~V}$)	
Control circuit				
Rated output voltage	S11, S13	33, Y39 / S21	22 VDC	
Input current / peak current	S12, S31	22, S32	$3 \mathrm{~mA} / 4.5 \mathrm{~mA}$	
	S14, S34	2, Y40	$4 \mathrm{~mA} / 4.5 \mathrm{~mA}$	
Response time $\mathrm{ta}_{\text {A }} / \mathrm{t}_{\text {A2 }}$			200 ms	
Minimum ON time I_{M}			100 ms	
Recovery time ${ }_{\text {w }}$			50 ms	
Release time t_{R}			20 ms	
Release time ${ }^{\text {R }}$, delayed contacts (tole			$0.1 / 0.2 / 0.3 / 0.4 / 0,5 / 0.8 / 1 / 1.5 / 2 / 3 \mathrm{~s}(0.1 \% \pm 15 \mathrm{~ms})$	
			$0 / 2 / 4 / 6 / 0.5 / 8 / 10 / 15 / 20 / 30 \mathrm{~s}(0.1 \% \pm 15 \mathrm{~ms})$	
			$0 / 20 / 40 / 60 / 80 / 100 / 150 / 200 / 250 / 300 \mathrm{~s}(0.1 \% \pm 15 \mathrm{~ms})$	
Permissable test pulse time top			$<1 \mathrm{~ms}$	
Max. resistivity, per channel ${ }^{1)}$	24 V DC	115-230 V AC	<50 ${ }^{\text {c }}$ \| < 50Ω	
Output circuit				
Enabling paths	13/14, 2	4, 33/34	normally open contact	
	57/58, 5	8, 77/78	normally open contact, OFF-delayed	
Signaling paths	31/32, 4	2 \| 75/76, 85/86	normally closed contact normally closed con	
Contact assignment			forcebly guided	
Contact type			Ag-alloy, gold-plated	
Rated switching voltage	enabling	signaling path	230 VAC	
Max. thermal current $\mathrm{Ith}^{\text {a }}$	enabling	signaling path	$6 \mathrm{~A} / 2 \mathrm{~A}$	
Max. total current ${ }^{2}$ of all current path	(Tu = 55		$40 \mathrm{~A}^{2}$	
Application category (NO)	AC-15	DC-13	$U_{e} 230 \mathrm{~V}, 1 \mathrm{l} 3 \mathrm{~A} \mid \mathrm{U}_{\mathrm{e}} 24 \mathrm{~V}, 1 \mathrm{l} 3 \mathrm{~A}$	
Short-circuit protection (NO), lead fuse	rcuit brea		6 A class gG / melting integral < $100 \mathrm{~A}^{2}$ s	
Mechanical life			10^{7} switching cycles	
General data				
Creepage distances and clearances be	en the cir		EN 60664-1	
Protection degree according to EN 605	housing/	rminals)	IP40 / IP20	
Ambient temperature / storage tempe			$-25^{\circ} \mathrm{C}-+55^{\circ} \mathrm{C} /-25^{\circ} \mathrm{C}-+75^{\circ} \mathrm{C}$	
Wire ranges screw terminals,	fine-stra	ded / solid	$1 \times 0.2 \mathrm{~mm}^{2}-2.5 \mathrm{~mm}^{2} / 2 \times 0.2 \mathrm{~mm}^{2}-1.0 \mathrm{~mm}^{2}$	
	fine-stra	ed with ferrules	$1 \times 0.25 \mathrm{~mm}^{2}-2.5 \mathrm{~mm}^{2} / 2 \times 0.25 \mathrm{~mm}^{2}-1.0 \mathrm{~mm}^{2}$	
Permissible torque			$0.5-0.6 \mathrm{Nm}$	
Wire ranges push-in terminals			$1 \times 0.25 \mathrm{~mm}^{2}-1.5 \mathrm{~mm}^{2}$	
Weight			$0.33 \mathrm{~kg} / 0.35 \mathrm{~kg}$	
Standards			EN ISO 13849-1, EN 62061, EN 50156-1	
Approvals			TÜV, GL, cULus, CCC	

SNV 4274SL / SNV 4074ST - MONITORING OF EMERGENCY STOP,

LIGHT BARRIERS AND SAFETY GATES, OFF-DELAYED/ON-DELAYED

OFF-DELAY WITH RETRIGGERING FUNCTION (SNV 4274SL)

After the supply voltage is applied to terminals A1/A2 and the safety inputs are closed, the contacts are switched on immediately, either automatically or by pressing the reset button (manual start). When the safety inputs are opened/de-energized, the contacts are switched off immediately or with a release delay.

The set release delay only expires if the safety inputs are opened longer than the release delay set on the device. If the safety inputs are closed again before the release delay has expired (retriggering), the delayed contacts will remain closed, too.

APPLICATIONS

- Monitoring of limit values in the process industry
- Monitoring of emergency stop applications
- Monitoring of safety gates
- Monitoring of interlocks
- Monitoring of light barriers
- Up to PL e / Category 4 (EN ISO 13849-1)
- Up to SILcl 3 (EN 62061)

FEATURES

- Continuously adjustable, analog time setting
- Time ranges 3 s , 30 s or 300 s
- Retriggering of the time delay possible
- Single-channel or two-channel control
- Manual or automatic start
- SafeStart
- Cross monitoring

ON-DELAY FUNCTION (SNV 4074ST)

After the supply voltage is applied to terminals A1/A2 and the safety inputs are closed, the contacts are switched on immediately or with a response delay, either automatically or by pressing the reset button (manual start). When the safety inputs are opened/ de-energized the contacts are switched off immediately.

CIRCUIT DIAGRAMS

SNV 4274SL

SNV 4074ST

OVERVIEW OF DEVICES | PART NUMBERS

Type	Time range	Rated voltage		Terminals	Part no. $\mathbf{2 4 V ~ D C ~}$	Part no. 115-230V AC	P.U.

TECHNICAL DATA

Function			Emergency stop relay		
Function display			5 LEDs, green/red		
Function mode / adjustment			Time / stepless		
Adjustment range			0.15-3s/1.5-30 s/15-300s		
Power supply circuit					
Rated voltage U_{N} A1, A2			$24 \mathrm{~V} \mathrm{DC} \mathrm{/} \mathrm{115-230} \mathrm{~V} \mathrm{AC}$		
Rated consumption 24 V DC \| 115-230 V AC			2.8W \| 3.2W/6.3VA		
Rated frequency			$50-60 \mathrm{~Hz}$		
Operating voltage range U_{B}			0.85-1.1 $\times \mathrm{U}_{\mathrm{N}}$		
Electrical isolation supply circuit - control circuit			yes (at $\left.\mathrm{U}_{\mathrm{N}}=115-230 \mathrm{~V} \mathrm{AC}\right)$		
Control circuit					
Rated output voltage S11, S13, S33, Y39/S21			22 VDC		
Input current / peak current	S12, S31/S22, S32		$3 \mathrm{~mA} / 4,5 \mathrm{~mA}$		
	S14, S34, Y2, Y40		$4 \mathrm{~mA} / 4,5 \mathrm{~mA}$		
Response time $t_{\text {A1 }} / t_{\text {A2 }}$			200 ms		
Minimum ON time $\mathrm{T}_{\text {M }}$			100 ms		
Recovery time $\mathrm{tw}_{\text {w }}$			50 ms		
Release time t_{R}			20 ms		
Release time t_{R}, delayed contacts (tolerance)			$0,15-3 \mathrm{~s}$ ($\pm 16 \%$ of the setting value)		
			$1,5-30 \mathrm{~s}$ ($\pm 16 \%$ of the setting value)		
			$15-300 \mathrm{~s}(\pm 16 \%$ of the setting value)		
Permissable test pulse time tip			$<1 \mathrm{~ms}$		
Max. resistivity, per channel ${ }^{1)}$	24 V DC	115-230 V AC	$<50 \Omega$	$<50 \Omega$	
Output circuit					
Enabling paths	13/14, 23/24		normally open contact		
	57/58, 57/68		normally open contact, time delayed		
Signaling paths	31/32, 4	2 \| 75/76, 85/86	normally closed contact		normall
Contact assignment			forcebly guided		
Contact type			Ag-alloy, gold-plated		
Rated switching voltage enabling- / signaling path			230 V AC		
Max. thermal current $\mathrm{t}_{\text {th }}$ Max ${ }^{\text {a }}$ (${ }^{\text {a }}$ enabling- / signaling path			$6 \mathrm{~A} / 2 \mathrm{~A}$		
			$40 \mathrm{~A}^{2}$		
	AC-15	DC-13	Ue 230	$3 \mathrm{~A} \mid \mathrm{U}_{\mathrm{e}} 24$	
Short-circuit protection (NO), lead fuse / circuit breaker			6 A class gG / melting integral < $100 \mathrm{~A}^{2}$ s		
Mechanical life			10^{7} switching cycles		
General data					
Creepage distances and clearances between the circuits			EN 60664-1		
Protection degree according to EN 60529 (housing / terminals)			IP40 / IP20		
Ambient temperature / storage temperature			$-25^{\circ} \mathrm{C}-+55^{\circ} \mathrm{C} /-25^{\circ} \mathrm{C}-+75^{\circ} \mathrm{C}$		
Wire ranges screw terminals,	fine-stranded / solid		$1 \times 0.2 \mathrm{~mm}^{2}-2.5 \mathrm{~mm}^{2} / 2 \times 0.2 \mathrm{~mm}^{2}-1.0 \mathrm{~mm}^{2}$		
	fine-stranded with ferrules		$1 \times 0.25 \mathrm{~mm}^{2}-2.5 \mathrm{~mm}^{2} / 2 \times 0.25 \mathrm{~mm}^{2}-1.0 \mathrm{~mm}^{2}$		
Permissible torque			$0.5-0.6 \mathrm{Nm}$		
Wire ranges push-in terminals			$1 \times 0.25 \mathrm{~mm}^{2}-1.5 \mathrm{~mm}^{2}$		
Weight			0,33 kg / 0,35 kg		
Standards			EN ISO 13849-1, EN 62061, EN 50156-1		
Approvals			TÜV, GL, cULus, CCC		
${ }^{1)}$ If two-channel devices are installed as single channel, the value is halved.					

SNE 1

CONTACT EXPANSION

APPLICATIONS

- Duplication of the enabling current paths of a basic device
- Contact expansion in safety-oriented systems
- Up to PL e Category 4 (EN ISO 13849-1)*
- Up to SILcl 3 (EN 62061)*

FEATURES

- Stop Category 0 and 1 according to EN 60204-1
- Single-channel operation
- 2 changeover contacts (positively driven)
- Sturdy retaining bracket
* Depends on the category of the basic device or the safety control.

CIRCUIT DIAGRAM

SNE 1

OVERVIEW OF DEVICES | PART NUMBERS

| Type | Rated voltage | Terminals | Part no. |
| :--- | :--- | :--- | :--- | :--- |
| SNE 1 | 24 VDC | Screw terminals | R.U. |

CIRCUIT DIAGRAM

SNE 1

TECHNICAL DATA

Function	Emergency stop expansion relay
Function display	none
Power supply circuit	
Rated voltage U_{N} A1/A2	24 V DC
Rated consumption	0.7 W
Operating voltage range U_{B}	$0.63-1.25 \times U_{N}$
Electrical isolation supply circuit - control circuit	yes
Control circuit	
Input current / peak current A1/A2	ca. 29 mA
Response time $\mathrm{t}_{\text {A1 }} / \mathrm{t}_{\text {A2 }}$	12 ms
Release time t_{R}	$<20 \mathrm{~ms}$
Output circuit	
Enabling paths 11/12/14,21/22/24	changeover contact
Contact assignment	forcebly guided
Contact type	Ag-alloy
Rated switching voltage	$230 \mathrm{VAC}, 24 \mathrm{~V}$ DC
Max. thermal current $I_{\text {th }}$	8 A
Max. total current 1^{2} of all current path $\quad\left(\mathrm{Tu}=55^{\circ} \mathrm{C}\right)$	$72 \mathrm{~A}^{2}$
Application category (NO) AC-15	$\mathrm{U}_{\mathrm{e}} 230 \mathrm{~V}, 1 \mathrm{l} 2 \mathrm{~A}$
DC-13	$\mathrm{U}_{\mathrm{e}} 24 \mathrm{~V}, \mathrm{l}$ e 3 A
Short-circuit protection (NO), lead fuse / circuit breaker	6 A class gL / melting integral < $100 \mathrm{~A}^{2} \mathrm{~s}$
Mechanical life	10×10^{6} switching cycles
General data	
Creepage distances and clearances between the circuits	EN 61810-5
Protection degree according to EN 60529 (housing / terminals)	IP20 / IP20
Ambient temperature / storage temperature	$-40^{\circ} \mathrm{C}-+70^{\circ} \mathrm{C} /-40^{\circ} \mathrm{C}-+70$
Wire range fine-stranded / solid	$0.25 \mathrm{~mm}^{2}-4.0 \mathrm{~mm}^{2}$ (AWG 24-12) / $0.25-6.0 \mathrm{~mm}^{2}$ (AWG 24-10)
Permissible torque	0.5 Nm
Weight	0.06 kg
Standards	EN 50205 (Type B)
Approvals	cURus

SNE 4003K

CONTACT EXPANSION

-(UL) us (CCC

FUNCTION

The SNE 4003K is an expansion device for basic devices (such as safety switching devices, light curtains, laser scanners) that are part of the machine's safety equipment and are used for protecting people, materials and machines.
The device is designed with two channels and redundancy. There is basic insulation to separate the enabling current paths from one another and the control circuits from the signaling current paths. The broad input voltage range of $15 \mathrm{~V} D C$ to 30 V DC makes the SNE 4003K ideal for single-channel or two-channel control by semiconductors.

APPLICATIONS

- Duplication of the enabling current paths of a basic device
- Contact expansion in safety-oriented systems
- Contact expansion for light curtains
- Up to PL e / Category 4 (EN ISO 13849-1)*
- Up to SILcl 3 (EN 62061)*

FEATURES

- Single-channel or two-channel operation
- 3 enabling current paths (NO contact)
- 2 signaling current paths (NC contact)
- Wide input voltage range from 15 to 30 V DC
- Suitable for semiconductor outputs
* Depends on the category of the basic device or the safety control.

Input voltage to the SNE 4003 K is connected via one or two enabling current paths of a basic device. When the input voltage is applied relays K1 and K2 switch into the ON position. After this switch-on phase, enabling current paths 13/14, 23/24, 33/34 are closed and feedback current path $Y 1 / Y 2$ and signaling current path 41/42 are opened.
This is displayed through two LEDs, K1 and K2, which are assigned to relays K1 and K2. If the enabling current paths of the basic device are opened when the emergency stop button is pressed, relays K1 and K2 on the SNE 4003K switch back into the OFF-position. The enabling current paths open and the feedback current path closes. Feedback current path Y1/Y2 prevents the basic device from switching on again before K1 or K2 releases.

CIRCUIT DIAGRAM

SNE 4003K

OVERVIEW OF DEVICES | PART NUMBERS

Type	Rated voltage	Terminals	Part no.	
SNE 4003K-A	24 VDC	Screw terminals, pluggable	R1.188.1340.0	1
SNE 4003K-C	24 VDC	Push-in terminals, pluggable	R1.188.4210.0	1

TECHNICAL DATA

Function	Emergency stop expansion relay	
Function display	2 LEDs, green	
Power supply circuit		
Rated voltage $U_{N} \quad \mathrm{~B} 1 / \mathrm{B} 2, \mathrm{~B} 3 / \mathrm{B} 4$	24 VDC	
Rated consumption 24 V DC	1.2 W	
Operating voltage range U_{B}	0.63-1.25 $\times \mathrm{U}_{\mathrm{N}}$	
Electrical isolation supply circuit - control circuit	no	
Control circuit		
Input current / peak current B1/B2, B3/B4	$50 \mathrm{~mA} / 500 \mathrm{~mA}$	<
Response time $\mathrm{t}_{\text {A1 }} / \mathrm{t}_{\text {A } 2}$	$<40 \mathrm{~ms}$	Ш-
Recovery time t_{w}	$\leq 40 \mathrm{~ms}$	\bigcirc
Release time t_{R}	$<20 \mathrm{~ms}$	4
Permissable test pulse time $t_{\text {TP }}$	$<1 \mathrm{~ms}$	O

Max. resistivity, per channel
$\leq\left(5+\left(1.6 \times U_{B} / U_{N}-1\right) \times 100\right) \Omega$

Output circuit

Enabling paths 13/14, 23/24, 33/34	normally open contact
Signaling paths 41/42	normally closed contact
Contact assignment	forcebly guided
Contact type	Ag-alloy, gold-plated
Rated switching voltage enabling- / signaling path	230 V AC
Y1/Y2	230 VAC
Max. thermal current $\mathrm{Ith}_{\text {the }}$ enabling- / signaling path	$6 \mathrm{~A} / 2 \mathrm{~A}$
Y1/Y2	2 A
Max. total current I^{2} of all current path $\quad\left(\mathrm{Tu}=55^{\circ} \mathrm{C}\right)$	$9 \mathrm{~A}^{2}$
Application category (NO) AC-15	$\mathrm{U}_{\mathrm{e}} 230 \mathrm{~V}, 1 \mathrm{l} 3 \mathrm{~A}$
DC-13	$\mathrm{U}_{\mathrm{e}} 24 \mathrm{~V}, \mathrm{l}$ e $2,5 \mathrm{~A}$
Short-circuit protection (NO), lead fuse / circuit breaker	6 A class gG / melting integral < $100 \mathrm{~A}^{2}$ s
Mechanical life	10^{7} switching cycles
General data	
Creepage distances and clearances between the circuits	EN 60664-1
Protection degree according to EN 60529 (housing / terminals)	IP40 / IP20
Ambient temperature / storage temperature	$-25^{\circ} \mathrm{C}-+55^{\circ} \mathrm{C} /-25^{\circ} \mathrm{C}-+75^{\circ} \mathrm{C}$
Wire ranges screw terminals, fine-stranded / solid	$1 \times 0.2 \mathrm{~mm}^{2}-2.5 \mathrm{~mm}^{2} / 2 \times 0.2 \mathrm{~mm}^{2}-1.0 \mathrm{~mm}^{2}$
fine-stranded with ferrules	$1 \times 0.25 \mathrm{~mm}^{2}-2.5 \mathrm{~mm}^{2} / 2 \times 0.25 \mathrm{~mm}^{2}-1.0 \mathrm{~mm}^{2}$
Permissible torque	$0.5-0.6 \mathrm{Nm}$
Wire ranges push-in terminals	$1 \times 0.25 \mathrm{~mm}^{2}-1.5 \mathrm{~mm}^{2}$
Weight	0,21 kg
Standards	EN ISO 13849-1, EN 62061
Approvals	DGUV, cULus, CCC

SNE 4004K/KV

CONTACT EXPANSION

© (UL)
 © (cc)

FUNCTION

SNE 4004K

Supply voltage to the SNE devices is routed via an enabling current path of a basic device. When the supply voltage is applied relays K1 and K2 switch into the ON position. After this switch-on phase the four enabling current paths $13 / 14,23 / 24,33 / 34,43 / 44$ (of the SNE 4004 K) or $17 / 18,27 / 28,37 / 38,47 / 48$ (of the SNE 4004 KV) are closed and the feedback current path $Y 1 / Y 2$ is open. This is displayed through two LEDs that are assigned to relays K1 and K2.

When the enabling current paths of the basic device are opened through the operation of the emergency stop button, relays K1 and K2 on the SNE 4004K switch back into the OFF-position. The enabling current paths open and the feedback current path closes. Feedback current path $\mathrm{Y} / \mathrm{Y} 2$ prevents the basic device from switching on again before K1 or K2 releases.

APPLICATIONS

- Expansion of a basic device's enabling current paths
- Contact expansion in safety equipment
- Up to PL d / Category 3 (EN ISO 13849-1)*
- Up to SILcl 2 (EN 62061)*

FEATURES

- Stop Category 0 and 1 according to EN 60204-1 (see "Function")
- Single-channel or two-channel control
- SNE 4004K: 4 enabling current paths, undelayed (NO contact) 3 signaling curent paths, undelayed (NC contact)
- SNE 4004KV: 4 enabling current paths, OFF-delayed (NO contact)
3 signaling current paths, OFF-delayed (NC contact), Time buffering
* Depends on the category of the basic device or the safety control.

SNE 4004KV

The functions of this device correspond to those of the SNE 4004K. The SNE 4004 KV is available with the following four OFF-delay times $t_{\text {R1 }}: 0.5 \mathrm{~s} ; 1 \mathrm{~s} ; 2 \mathrm{~s}$ and 3 s . The device has an OFF-delay time that is enabled through capacitors.
This causes the OFF-delay time $t_{R 1}$ to elapse completely even in case of failure of the power supply (A1/A2). It cannot be reset before it has elapsed. Once the delay time has elapsed, relays K1 and K2 switch into the OFF- position. OFF-delay times of >0 s correspond to stop category 1.

CIRCUIT DIAGRAMS

SNE 4004K

SNE 4004KV

OVERVIEW OF DEVICES | PART NUMBERS

Type	Time range	Rated voltage	Terminals	Part no.	P.U.
SNE 4004K-A	-	$24 \mathrm{VAC} / \mathrm{DC}$	Screw terminals, pluggable	R1.188.0590.0	1
SNE 4004K-C	-	$24 \mathrm{VAC} / \mathrm{DC}$	Push-in terminals, pluggable	R1.188.1980.0	1
SNE 4004KV-A	0.5 s	24 VDC	Screw terminals, pluggable	R1.188.0460.0	1
	1 s	24 VDC	Screw terminals, pluggable	R1.188.0470.0	1
	2 s	24 V DC	Screw terminals, pluggable	R1.188.0480.0	1
	3 s	24 VDC	Screw terminals, pluggable	R1.188.0490.0	1
SNE 4004KV-C	0.5 s	24 V DC	Push-in terminals, pluggable	R1.188.2410.0	1
	1 s	24 V DC	Push-in terminals, pluggable	R1.188.2420.0	1
	2 s	24 V DC	Push-in terminals, pluggable	R1.188.2430.0	1
	3 s	24 VDC	Push-in terminals, pluggable	R1.188.2440.0	1

TECHNICAL DATA

Function			Emergency stop expansion relay
Function display			2 LEDs, green
Function mode / adjustment			Time, fixed
Adjustment range			0,5s/1s/2s/3s
Power supply circuit			
Rated voltage U_{N}	A1, A2		24 V DC / $24 \mathrm{VAC} / \mathrm{DC}$
Rated consumption	24 V DC	$24 \mathrm{VAC} / \mathrm{DC}$	1.2W \| 1.7W/3.1 VA
Rated frequency			$50-60 \mathrm{~Hz}$
Operating voltage range U_{B}			0.85-1.1 $\times \mathrm{U}_{\mathrm{N}}$
Electrical isolation supply circuit - control	circuit		non
Control circuit			
Input current / peak current	A1, A2		$65 \mathrm{~mA} / 1800 \mathrm{~mA}$
Response time $\mathrm{t}_{\text {A1 }} / \mathrm{t}_{\text {A2 }}$			20 ms
Minimum ON time t_{M}			$0,15 \times \mathrm{t}_{\mathrm{R}}$
Recovery time $\mathrm{t}_{\text {w }}$			$\leq 200 \mathrm{~ms}$
Release time t_{R}			40 ms
Release time t_{R}, delayed contacts (tole			$0.5 \mathrm{~s} / 1 \mathrm{~s} / 2 \mathrm{~s} / 3 \mathrm{~s}(\pm 35 \%)$
Max. resistivity, per channel ${ }^{1)}$			$\leq\left(2.5+\left(1.176 \times U_{B} / U_{N}-1\right) \times 50\right) \Omega$
Output circuit			
Enabling paths	13/14, 2	, 33/34, 43/44	normally open contact
	17/17, 27	, 37/38, 47/48	normally open contact, time delayed
Signaling paths	51/52, 6		normally closed contact
	55/56, 6		normally closed contact, time delayed
Contact assignment			forcebly guided
Contact type			Ag-alloy, gold-plated
Rated switching voltage	enabling	signaling path	230 V AC
	Y1/Y2		230 V AC
Max. thermal current $l_{\text {th }}$	enabling	signaling path	$6 \mathrm{~A} / 2 \mathrm{~A}$
	Y1/Y2		2 A
Max. total current I^{2} of all current path	($\mathrm{Tu}=55$		$9 \mathrm{~A}^{2}$
Application category (NO)	AC-15	DC-13	$\mathrm{U}_{\mathrm{e}} 230 \mathrm{~V}, \mathrm{I}_{\mathrm{e}} 5 \mathrm{~A}$ \| $\mathrm{U}_{\mathrm{e}} 24 \mathrm{~V}, \mathrm{I}_{\mathrm{e}} 5 \mathrm{~A}$
Short-circuit protection (NO), lead fuse / circuit breaker			6 A class gG / melting integral < $100 \mathrm{~A}^{2} \mathrm{~S}$
Mechanical life			10^{7} switching cycles
General data			
Creepage distances and clearances between the circuits			EN 60664-1
Protection degree according to EN 60529 (housing / terminals)			IP40 / IP20
Ambient temperature / storage temperature			$-25^{\circ} \mathrm{C}-+55^{\circ} \mathrm{C} /-25^{\circ} \mathrm{C}-+75^{\circ} \mathrm{C}$
Wire ranges screw terminals,	fine-stra	ed / solid	$1 \times 0.2 \mathrm{~mm}^{2}-2.5 \mathrm{~mm}^{2} / 2 \times 0.2 \mathrm{~mm}^{2}-1.0 \mathrm{~mm}^{2}$
	fine-stra	ed with ferrule	$1 \times 0.25 \mathrm{~mm}^{2}-2.5 \mathrm{~mm}^{2} / 2 \times 0.25 \mathrm{~mm}^{2}-1.0 \mathrm{~mm}^{2}$
Permissible torque			0,5-0,6 Nm
Wire ranges push-in terminals			$1 \times 0.25 \mathrm{~mm}^{2}-1.5 \mathrm{~mm}^{2}$
Weight			0.20 kg
Standards			EN ISO 13849-1, EN 62061
Approvals			DGUV, cULus, CCC

SNE 4012K / SNE 4024K

CONTACT EXPANSION

\triangle ©(1) us ©

FUNCTION

Once the supply voltage has been applied to terminals B1/A2 (B2/ A2), the enabling current paths (NOC) are automatically closed and the signaling current paths (NCC) are opened.
When the supply voltage is ceased, the enabling current paths (NOC) are immediately opened and the signaling current paths (NCC) are immediately closed.

APPLICATIONS

- Expansion of a basic device's enabling current paths
- Contact expansion in safety equipment
- Up to PL e / Category 3 (EN ISO 13849-1)*
- Up to SILcl 3 (EN 62061)*

FEATURES

- Stop Category 0 and 1 according to EN 60204-1 (see "Function")
- Single-channel control
- SNE 4012K: 2 enabling current paths (NO contact)
- SNE 4024K: 2×2 enabling current paths (NO contact)
* Depends on the category of the basic device or the safety control.

CIRCUIT DIAGRAMS

SNE 4024K

OVERVIEW OF DEVICES | PART NUMBERS

Type	Rated voltage	Terminals	Part no.	
SNE 4012K-A	24 V DC	Screw terminals, pluggable	R1.188.3910.0	1
SNE 4012K-C	$24 V$ DC	Push-in terminals, pluggable	R1.188.3920.0	1
SNE 4024K-A	$24 V D C$	Screw terminals, pluggable	R1.188.3930.0	1
SNE 4024K-C	$24 V D C$	Push-in terminals, pluggable	R1.188.3940.0	1

Function	Emergency stop expansion relay
Function display - SNE 4012K	1 LED, green
Function display - SNE 4024K	2 LED, green
Power supply circuit	
Rated voltage $U_{N} \quad \mathrm{~B} 1 / \mathrm{A} 2 ; \mathrm{B2} / \mathrm{A} 2$	24 V DC
Rated consumption - SNE 4012K	0.7 W
Rated consumption - SNE 4022K	1.4 W
Operating voltage range U_{B}	0.75-1.25 U_{N}
Control circuit	
Input current / peak current B1/A2	ca. $30 \mathrm{~mA} / 110 \mathrm{~mA}$
B2/A2	ca. $30 \mathrm{~mA} / 110 \mathrm{~mA}$
Response time $\mathrm{t}_{\text {A1 }} / \mathrm{t}_{\text {A2 }}$	$<15 \mathrm{~ms}$
Recovery time $\mathrm{tw}_{\text {w }}$	$\leq 30 \mathrm{~ms}$
Release time t_{R}	$\leq 15 \mathrm{~ms}$
Max. resistivity, per channel ${ }^{1)}$	$\leq\left(5+\left(1,333 \times U_{B} / U_{N}-1\right) \times 200\right) \Omega$
Output circuit	
Enabling paths	normally open contact
	normally open contact
Signaling paths	normally closed contact
	normally closed contact
Contact assignment	forcebly guided
Contact type	Ag-alloy
Rated switching voltage	230 V AC, 24 V DC
Max. thermal current $\mathrm{t}_{\text {th }}$ enabling / signaling path	6 A
Max. total current I^{2} of all current path \quad - SNE $4012 \mathrm{~K}\left(\mathrm{Tu}=55^{\circ} \mathrm{C}\right)$	$72 \mathrm{~A}^{2}$
Max. total current ${ }^{2}$ of all current path \quad - SNE $4024 \mathrm{~K}\left(\mathrm{Tu}=55^{\circ} \mathrm{C}\right)$	$2 \times 72 \mathrm{~A}^{2} / 2 \times 8 \mathrm{~A}^{2}$
Application category (NO) AC-15 \| DC-13	$\mathrm{U}_{\mathrm{e}} 230 \mathrm{~V}, \mathrm{I}_{\mathrm{e}} 3 \mathrm{~A}$ \| $\mathrm{U}_{\mathrm{e}} 24 \mathrm{~V}, \mathrm{I}_{\mathrm{e}} 1 \mathrm{~A}$
Short-circuit protection (NO), lead fuse / circuit breaker	6 A class gL / melting integral < $100 \mathrm{~A}^{2} \mathrm{~s}$
Mechanical life	10×10^{6} switching cycles
General data	
Creepage distances and clearances between the circuits	EN 60664-1
Protection degree according to EN 60529 (housing / terminals)	IP40 / IP20
Ambient temperature / storage temperature	$-25^{\circ} \mathrm{C}-+65^{\circ} \mathrm{C} /-25^{\circ} \mathrm{C}-+75{ }^{\circ} \mathrm{C}$
Wire ranges screw terminals, fine-stranded / solid	$1 \times 0.2 \mathrm{~mm}^{2}-2.5 \mathrm{~mm}^{2} / 2 \times 0.2 \mathrm{~mm}^{2}-1.0 \mathrm{~mm}^{2}$
fine-stranded with ferrules	$1 \times 0.25 \mathrm{~mm}^{2}-2.5 \mathrm{~mm}^{2} / 2 \times 0.25 \mathrm{~mm}^{2}-1.0 \mathrm{~mm}^{2}$
Permissible torque	$0.5-0.6 \mathrm{Nm}$
Wire ranges push-in terminals	$1 \times 0.25 \mathrm{~mm}^{2}-1.5 \mathrm{~mm}^{2}$
Weight	0.180 kg
Standards	EN ISO 13849-1, EN 62061, DIN EN 50156-1, EN 61511
Approvals	TÜV, cULus, CCC

SNE 4028S

CONTACT EXPANSION

APPLICATIONS

- Duplication of the enabling current paths of a basic device
- Contact expansion in safety-oriented systems
- Amplification of the output performance of light curtains
- Up to PL e / Category 4 (EN ISO 13849-1)*
- Up to SILcl 3 (EN 62061)*

FEATURES

- Single-channel or two-channel control
- Cross monitoring
- Safe isolation
- 8 enabling current paths, 1 signal current path
* Depends on the category of the basic device or the safety control.

FUNCTION

After the supply voltage is applied to terminals A1/ A2 and the safety inputs are closed, the enabling current paths (NO contacts) are closed and the signaling current paths (NC contacts) are opened automatically. When the safety inputs are opened/ de-energized the enabling current paths (NO contacts) are opened immediately and the signaling current paths (NC contacts) are closed.

CIRCUIT DIAGRAM

SNE 4028S

OVERVIEW OF DEVICES | PART NUMBERS

Type	Rated voltage	Terminals	Part no.	
SNE 4028S-A	24 V DC	Screw terminals, pluggable	R1.188.3120.0	1
SNE 4028S-A	$115-230$ V AC	Screwterminals, pluggable	R1.188.3510.0	1
SNE 4028S-C	24 V DC	Push-in terminals, pluggable	R1.188.3540.0	1
SNE 4028S-C	$115-230$ V AC	Push-in terminals, pluggable	R1.188.3550.0	1

TECHNICAL DATA

[^0]: ${ }^{1)}$ applies to undelayed contacts；the following applies to delayed contacts：PL d／category 3 ／SILCL 2
 ${ }^{2)}$ depends on the category of the basic device or the safety analysis

