

Phone (800) 808-2131
Fax (800) 711-1616 www.worldwideelectric.com

TABLE OF CONTENTS

WARRANTY 1
INTRODUCTION 2
CONTROL FEATURES 2
HEATSINK DIMENSIONS 2
WDCCONT HOOK-UP DIAGRAM 3
WDCCONTREV HOOK-UP DIAGRAM 4
WIRING PROCEDURE \& FUSING 5
TERMINAL STRIP WIRING 5
START-UP PROCEDURE \& ADJUSTMENTS 6
TRIMPOT ADJUSTMENT PROCEDURE \& SETTING CHART 7
CONTROL MODIFICATIONS 8
IN CASE OF DIFFICULTY 8
SPECIFICATIONS \& TYPICAL MOTOR CURRENTS 9
WDC SERIES PARTS PLACEMENT \& LIST 9
WDC SERIES SCHEMATIC 10

WARRANTY

WorldWide Electric Corporation (WWE) warrants its products to be free from defects in material and workmanship. The exclusive remedy for this warranty is WWE factory replacement of any part or parts of such product which shall within 12 months after delivery to the purchaser be returned to WWE factory with all transportation charges prepaid and which WWE determines to its satisfaction to be defective. This warranty shall not extend to defects in assembly by other than WWE or to any article which has been repaired or altered by other than WWE or to any article which WWE determines has been subjected to improper use. WWE assumes no responsibility for the design characteristics of any unit or its operation in any circuit or assembly. This warranty is in lieu of all other warranties, express or implied; all other liabilities or obligations on the part of WWE, including consequential damages, are hereby expressly excluded.
NOTE: Carefully check the control for shipping damage. Report any damage to the carrier immediately. Do not attempt to operate the drive if visible damage is evident to either the circuit or to the electronic components.
All information contained in this manual is intended to be correct, however information and data in this manual are subject to change without notice. WWE makes no warranty of any kind with regard to this information or data. Further, WWE is not responsible for any omissions or errors or consequential damage caused by the user of the product. WWE reserves the right to make manufacturing changes which may not be included in this manual.

WARNING

[^0]
INTRODUCTION

- TheWDC Series variable speed DC motor control is a versatile, general purpose control rated to 2 HP.
- The control has a dual voltage input (may accommodate either 120 or 240 VAC). It is available with an adjustable HP range of $1 / 8$ thru 1 HP for 120 VAC, and $1 / 4$ thru 2 HP for 240 VAC input.
- Designed for DC Permanent Magnet, Shunt Wound, and some Universal (AC/DC) motors in the above horsepower ranges.
- Incoming AC voltage is also converted to adjustable full wave rectified DC voltage (via a packaged bridge) to operate the DC motor. Also, a full wave field voltage is provided for shunt wound motors (see page 4 for voltages).
- The control incorporates transient voltage protection with adjustable current limit and an AC fuse for protection. It features adjustable minimum and maximum speeds along with adjustable acceleration and IR Compensation. Tach feedback is accomplished thru a connection to a pin (P2) on the printed circuit board.
- The WDC Series has a linear acceleration/deceleration ramp.
- The control also has a barrier type terminal strip for all power and control wiring.
- The enclosed model uses a gasketed cover assembly that is rated NEMA 4/12.
- cULus Listed.

CONTROL FEATURES

MIN. SPEED (minimum speed) - Allows adjustment of the motor speed when the speedpot is set at minimum (CCW). This permits the user to eliminate the "deadband" on the main speed control permitting zero calibration. Clockwise rotation of "MIN" trimpot increases minimum motor speed.

MAX. SPEED (maximum speed) - provides for adjustment of the motor speed when the speedpot is set at maximum (CW). This permits the user to eliminate the top end "deadband", which will provide full speed at maximum rotation. Rotation of the "MAX" trimpot in the clockwise direction increases the maximum motor speed.

ACCEL (acceleration) - allows adjustment of the motor acceleration from a minimum of 0.5 seconds to approximately 8.0 seconds. The deceleration time depends on the ACCEL setting. For DECEL time equal to ACCEL time, see -17B option.

IR COMP (speed regulation) - adjusts the control output to compensate for speed changes caused by varying motor loads. As the motor load is increased, IR COMP increases the voltage output of the control. Clockwise rotation of the "IR COMP" trimpot will increase compensation.

CUR. LIM. (current limit) - provides protection from excessive armature current by limiting the maximum armature current the control can provide. This enables adjustment of the maximum torque the motor can deliver. Current limit adjustment (CUR. LIM.) is set at 125% of the rated motor current (torque) based on horsepower. Clockwise rotation of the "CUR. LIM." trimpot increases the current (torque) the control will provide.

TERMINAL STRIP - allows for connection of AC lines, motor leads, motor field (if needed), and speed potentiometer.

HEATSINK DIMENSIONS

Allow $3.50^{\prime \prime}$ for height clearance, 7.40 " for overall length.

WDCCONT HOOK-UP DIAGRAM (SEe PAge 4 for wdccontrev)

* Used for shunt wound motors only! No connection is made to these terminals when using permanent magnet motors.

WARNING

1. Be sure the control housing is properly grounded.
2. Arm connections must not be switched or broken while the control is on. Serious damage may result.
3. For non-speedpot applications, the input connections to the Lo-Wiper-Hi leads must not be grounded. Serious control damage may result from a grounded input.

WDCCONTREV HOOK-UP DIAGRAM

Permits reversing of motor. This is accomplished using a 4PDT blocked center switch. When switched between the forward/reverse positions, a delay is encountered due to the blocked center position, which protects the control from any voltage that may be at the armature terminals. The center position is OFF/NEUTRAL.

THE MOTOR MUST COME TO A COMPLETE STOP BEFORE CHANGING DIRECTIONS. IF THE MOTOR DOES NOT COME TO A COMPLETE STOP, SERIOUS DAMAGE TO THE CONTROL MAY RESULT. BYPASS OF THE CENTER BLOCK OF THE SWITCH MAY RESULT IN DAMAGE TO THE CONTROL.

A 4PDT blocked center-off switch is factory installed into the cover assembly. The two position terminal strip (P3) is factory installed on the main board (below). The output on P3 is the switched (FWD/REV) output and the output of terminals P1-4 and P1-5 is not switched.

Wiring Diagram

Hook-Up Diagram

[^1]
WIRING PROCEDURE

1. Size all wires which carry armature or line current to handle currents as specified by national, state, and/or local codes. All other wires may be \#18 AWG or smaller as permitted by local code.
2. Separate control wires from all the Armature and AC line wires when routed in conduits or in wire trays. The enclosed version has two threaded holes ($1 / 2^{\prime \prime}$ NPT) in one endplate, located near the terminal strip, for this purpose.

FUSING

The control is provided with a fuse in AC line 1 ($\mathrm{P} 1-11$). This fuse is sized to open in the event of a shorted armature or if an armature line is shorted to earth ground. As long as 120 VAC input is connected properly, there is no additional fusing needed.

For 240 VAC applications, an external fuse may be used in AC line 2 (P1-10). This fuse should be a Bussman ABC10 or LittleFuse $314-010$. This added fuse will provide protection on both AC legs to the 250G. If you desire not to fuse both legs, the fuse in the control will open in the event of excessive armature currents.

Note: AC current is determined by motor characteristics. In some applications it may be necessary to increase fuse value.

TERMINAL STRIP WIRING

The WDC Series has an 11 position terminal strip for ease of connection.

P1-1 (SPEEDPOT LO) Connects to low side (orange wire) of the 5K speedpot (normally the CCW end). This input is raised and lowered by the MIN. trimpot.

P1-2 (SPEEDPOT WIPER) Connects to wiper (red wire) of the 5K speedpot (center lead).
P1-3 (SPEEDPOT HI) Connects to high side (white wire) of the 5 K speedpot (CW end). This is internal +12 volts. For startstop applications, the connection between this terminal and speedpot HI can be opened and closed by a SPST switch. NOTE: INPUT MUST NOT BE GROUNDED!!

P1-4 (-ARM) Connects to minus (-) Armature wire (A2) on motor.
P1-5 (+ARM) Connects to plus (+) Armature wire (A1) on motor. 0-90 VDC for 120 VAC input OR 0-180 VDC for 240 VAC input. See "SPECIFICATIONS" for output rating.

P1-6 (+FIELD) DO NOT USE for permanent magnet motor. This supplies +Field voltage for a SHUNT WOUND MOTOR. Refer to Field Voltage table. For motors with dual voltage field (i.e. $50 / 100 \mathrm{~V}$ or $100 / 200 \mathrm{~V}$), make sure highest value is connected.

FIELD VOLTAGE TABLE		
VAC INPUT	120	240
VDC FIELD	100	200

P1-7 (-FIELD) Connect minus (-) Field wire of SHUNT WOUND MOTOR.
P1-8 $\} \quad$ VERY IMPORTANT !!! Refer to "FUSING", shown above.
P1-9 (AC) 120VAC - Connect incoming hot AC (black wire) to P1-9 and Neutral (white wire) to P1-8.
Connect ground (green wire) to Chassis Ground, as shown in diagram - page 3.
240VAC - Connect both hot sides, one to P1-8 and one to P1-9. Also connect ground wire to Chassis Ground.

P1-10 $\}$ VERY IMPORTANT !!!

Refer to "FUSING", shown above.
P1-11\} (SWITCHED AC)
No connections to P1-10 and P1-11. This is for switched AC output.
Note Wiring Hook-Up diagram (page 3). Pilot lights can be connected between these
terminals. The voltage present at these terminals is AC input voltage.

Warning: Do not attempt to perform a Hi-Pot test across AC lines with control in circuit.

 This will result in immediate or long term damage to the control.
START-UP PROCEDURE

WARNING: ALL POWER MUST BE TURNED OFF BEFORE PROCEEDING !!!

1. Recheck all wiring. Accidental grounds, loose or pinched wires on armature or speedpot wires may damage the control when power is applied.
2. Check to see that incoming service is of correct voltage.
3. Turn speedpot to zero (fully CCW).
4. Turn power on and advance speedpot while observing motor. WARNING: POWER MUST BE OFF BEFORE STEP 5 CAN BE ACCOMPLISHED!
5. If motor rotation is incorrect, turn power off at external disconnect and reverse +ARM and -ARM connections.
6. Check for satisfactory operation throughout the speed range.
7. If operation is satisfactory, no readjustments are needed.
8. If instability or surging is observed, or maximum speed is higher than desired, see section "TRIMPOT ADJUSTMENT".
9. For other problems, consult section "IN CASE OF DIFFICULTY".

ADJUSTMENTS

The trimpot adjustments, MIN, MAX, IR COMP, and CUR LIM are checked at the factory using a typical motor at 240 VAC input. Use the TRIMPOT SETTING CHART on page 6 to preset the trimpots for the proper setting for your application. The remaining trimpot - ACCEL, is a variable acceleration and should be set for your particular application.

The trimpot chart is approximate. The chart is valid when using the speedpot or a 0-10/12 VDC input signal to set speed.
These adjustments are permanent; periodic readjustment is normally not needed. Operation of the control beyond $\pm 10 \%$ of normal line voltage could result in readjustments.

TRIMPOT ADJUSTMENT PROCEDURE

TRIMPOT	FUNCTION
MAX	SETS MAXIMUM MOTOR SPEED when Speedpot is setat maximum (100\% rotation
	CW). CW rotation of MAX trimpotincreases maximum motor speed.

MIN

SETS MINIMUM MOTOR SPEED when speedpot is set at zero. CW rotation will increase minimum motor speed.

ADJUSTMENT

1. TURN DRIVE POWER OFF!!
2. Connect DC Voltmeter: + to +ARM, - to -ARM.
3. Set meter voltage range: (90VDC or 180VDC).
4. Turn power on. Set speedpot at 100%.
5. Adjust MAX trimpot to rated motor armature voltage as shown on meter.
NOTE: A tachometer or strobe may be used in lieu of a meter. Follow above steps, except adjust MAX trimpot to rated motor base speed indicated by tachometer or strobe.
6. Set speedpot to zero (fully CCW).
7. Rotate MIN trimpot CW until motor rotates.
8. Slowly rotate MIN trimpot CCW until motor stops. NOTE: If motor rotation at zero is desired, rotate MIN trimpot CW until desired minimum speed is reached.

ALLOWS ADJUSTMENT OF ACCELERATION by user.

1. CW rotation increases time of acceleration.

TRIMPOT SETTING CHART

These settings apply when using a 5000Ω Master Speedpot.
This trimpot chart is approximate. Use it in conjunction with the Adjustment Procedures.

| MIN MAX ACCEL IRCUR.
 LIM. | H.P. |
| :---: | :---: | :---: | :---: | :---: |
| INPUT
 VOLTAGE | OUTPUT
 VOLTAGE |

| MIN MAX ACCEL IRCUR.
 LIM. | H.P. | INPUT
 VOLTAGE | OUTPUT
 VOLTAGE |
| :---: | :---: | :---: | :---: | :---: |

CONTROL MODIFICATIONS

TWO SPEED OPERATION

Two pot operation is done using two 10 K Ohm speed potentiometers in parallel (both HI's to P1-3, both LO's to P1-1). The WIPER is switched using a SPDT switch.

DYNAMIC BRAKING

A DPDT switch is used to inhibit the control and to connect the DBR. Typical values for the DBR (dynamic brake resistor) are 5 Ohms for 120V, 10 Ohms for 240V (both 35W to 50W). Note that motor horsepower, inertia, and cycle time effect sizing of the DBR. NOTE: This modification cannot be used with the -17B option.

IN CASE OF DIFFICULTY

If a newly installed control will not operate, it is possible that a terminal or connection is loose. Check to make sure that all connections are secure and correct. If control still doesn't operate, refer to the following chart.

PROBLEM	POSSIBLE CAUSE(S)	CORRECTIVE ACTION(S)
Motor doesn't operate	- blown fuse	- replace fuse
	- incorrect or no power source	- install proper service
	- speedpot set at zero	- adjust speedpot CW to start
	- worn motor brushes	- replace motor brushes
Armature output voltage	- no motor or load connected	- check that motor or load is connected
cannot be adjusted, output		to armature terminals
is a constant DC level	- speedpot low connection open	- check that speedpot low wire is connected
Motor stalls, or runs very	- low voltage	- check - should be above 108V
slowly with speedpot	- overload condition	- reduce load
turned fully CW	- worn motor brushes	- replace motor brushes
	- max speed set incorrectly	- see ADJUSTMENT PROCEDURE
Motor hunts	- too much IR Comp.	- see ADJUSTMENT PROCEDURE
	- motor is in current limit	- see ADJUSTMENT PROCEDURE
	- motor not pulling enough current	- current must be greater than 150 mA D.C.
	- max trimpot set too high	- see ADJUSTMENT PROCEDURE
	- motor speed is above rated speed	- reduce speed
Repeated fuse blowing	- low voltage	- check - should be above 108V
	- overload condition	- reduce load
	- worn motor brushes	- replace
	- defective motor bearings	- replace
- defective electrical component	- call WorldWide Distributor or Representative	
Motor runs but will not	- incorrect wiring (enclosed version)	- check TERMINAL STRIP WIRING for
stop		correct wiring instructions (note AC line
		connection in particular)

If control still will not operate, consult your WorldWide Electric Distributor or Representative.

SPECIFICATIONS

AC input voltage $\pm 10 \%$ of rated line voltage Acceleration 0.5 to 8.0 seconds (note -17B option)

Amps - DC output 150 mA to 10.8 Amps D.C.
Controller overload capacity 150\% for one minute
Current limit trimpot range
1.0 to 15.0 Amps D.C.

Deceleration (dependent on acceleration time setting) .06 to .80 second range
Dimensions and weight:

	WIDTH	LENGTH	HEIGHT	WEIGHT
ENGLISH	$5.53^{\prime \prime}$	$7.25^{\prime \prime}$	$3.50^{\prime \prime}$	25.50 oz.
METRIC	140 mm	184 mm	89 mm	723 grams

Drive service factor
Efficiency
Max. trimpot speed range
Min. trimpot speed range
0% to 30% of maximum speed
Minimum external impedance (pot hi to pot low)
$5 \mathrm{~K} \Omega$
Power devices \qquad ... packaged full wave bridge
Shunt field voltage 100VDC for 120VAC input; 200VDC for 240VAC input; 1 amp maximum
Speed control \qquad via 5 K ohms 2 W linear potentiometer or 0-10VDC isolated signal
Speed range via
Speed regulation $\pm 1 \%$ of base speed
Temperature range
-10° to $45^{\circ} \mathrm{C}$. ambient (15° to $115^{\circ} \mathrm{F}$.)
Transient protection
Type ramp of accel/decel G-Mov
linear

TYPICAL MOTOR CURRENTS

Horsepower	$1 / 4$	$1 / 3$	$1 / 2$	$3 / 4$	1.0	1.5	2.0
Typical AC Amps (120VAC)	3.50	4.40	6.50	9.30	13.20	----	-----
Typical Arm Amps (120VAC)	2.70	3.40	5.00	7.20	10.20	----	----
Typical AC Amps (240VAC)	1.80	2.20	3.30	4.80	6.50	9.70	12.90
Typical Arm Amps (240VAC)	1.40	1.70	2.50	3.70	5.00	7.50	9.90

WDC SERIES PARTS PLACEMENT \& LIST

NOTE: ALL RESISTORS 1/2W UNLESS SPECIFIED

* CUSTOMER WIRED SPEEDPOT

RESISTORS

R1	15K 8W	R20	1K		
R2	2.7 K	R21	1K		
R3	2.7K	R22	50K (MA		
R4	1.2M	R23	100Ω (IR)		
R5	180K	R24	. $01 \Omega 5 \mathrm{~W}$		
R6	82K	R25	390』		
R7	470K	R26	390Ω		
R8	15K	R27	1K		
R9	250K (ACCEL)	R28	20K 1/4W		
R10	5K SPEEDPOT*	R29	10K		
R11	10K	R30	180K		
R12	$5 \mathrm{~K}(\mathrm{MIN})$	R31	390K		
R13	470K	R32	47K		
R14	300K	R33	470K		
R15	5K (C.L.)	R34	100K		
R16	4.7K	R35	470Ω	CAPACITORS	
R17	390K	R36	91K		
R18	4.7K	R37	1Ω		
R19	150K			C1	10uf 35V
DIODES		ACTIVE DEVICES		C2	.01uf 100V
D1	1N4005 Q	2N6	027	C4	.033uf 400 V
D2	1N4005 Q	305	2 MOC	C5	. 1 uf 50 V
D3	1N914B Q	L51	2FY131	C6	22uf 16V
D4	1N5242B Q	L51	2FY131	C7	.1uf 50V
D5	L512FY131 Q	LM3	24 N IC	C8	. 001 uf 1KV
D6	L512FY131 Q	275	V G-MOV	C9	.22uf 250V
D7	L512FY131			C10	. 01 uf 100V
D8	1N914B			C11	. 01 uf 100V
D9	1N4005			C12	.068uf 250V
D10	1N5233B M	MISC. PARTS			(across-th

F1 10 AMP FUSE (Bussman ABC or Little Fuse 314 Series ceramic fuses)
H1 S-8201-1X FUSE HOLDER
JU1 1.75" - 16GA. SOLID INS. WIRE
JU2 2.50"-16GA. SOLID INS. WIRE
P1 11 POS. TERMINAL STRIP
P2 1/4" SPADE PIN TERMINAL

[^0]: Improper installation or operation of this control may cause injury to personnel or control failure. The control must be installed in accordance with local, state, and national safety codes. Make certain that the power supply is disconnected before attempting to service or remove any components!!! If the power disconnect point is out of sight, lock it in disconnected position and tag to prevent unexpected application of power. Only a qualified electrician or service personnel should perform any electrical troubleshooting or maintenance. At no time should circuit continuity be checked by shorting terminals with a screwdriver or other metal device.

[^1]: * Used for shunt wound motors only! No connection is made to these terminals when using permanent magnet motors.

